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Abstract� In the context of digital signal processing� synchronous data
�ow �SDF graphs ���� are widely used for speci�cation� For these� so
called single appearance schedules provide program memory�optimal uni�
processor implementations� Here� bu�er memoryminimized schedules are
explored among these using an Evolutionary Algorithm �EA� Whereas
for a restricted class of graphs� there exist optimal polynomial algorithms�
these are not exact and may provide poor results when applied to ar�
bitrary� i�e�� randomly generated graphs� We show that a careful EA
implementation may outperform these algorithms by sometimes orders
of magnitude�

� Introduction

Data�ow speci�cations are widespread in areas of digital signal and image pro�
cessing� In data�ow� a speci�cation consists of a directed graph in which the
nodes represent computations and the arcs specify the �ow of data� Synchronous
data�ow �	
� is a restricted form of data�ow in which the nodes� called actors

have a simple �ring rule� The number of data values tokens� samples� produced
and consumed by each actor is �xed and known at compile�time�

The SDF model is used in many industrial DSP design tools� e�g�� SPW by
Cadence� COSSAP by Synopsys� as well as in research�oriented environments�
e�g�� ��� 		� 	��� Typically� code is generated from a given schedule by instantiat�
ing inline actor code in the �nal program� Hence� the size of the required program
memory depends on the number of times an actor appears in a schedule� and
so called single appearance schedules� where each actor appears only once in a
schedule� are evidently program memory optimal� Results on the existence of
such schedules have been published for general SDF graphs �	��

In this paper� we treat the problem of exploring single appearance schedules
that minimize the amount of required bu�er memory for the class of acyclic SDF
graphs� Such a methodology may be considered as part of a general framework
that considers general SDF graphs and generates schedules for acyclic subgraphs
using our approach �
��



��� Motivation

Given is an acyclic SDF graph in the following� The number of single appear�
ance schedules that must be investigated is at least equal to and often much
greater than� the number of topological sorts of actors in the graph� This num�
ber is not polynomially bounded� e�g�� a complete bipartite graph with 
n nodes
has n��� possible topological sorts� This complexity prevents techniques based
on enumeration from being applied sucessfully� In �
�� a heuristic called APGAN
for algorithm for pairwise grouping of adjacent nodes acyclic version�� has been
developed that constructs a schedule with the objective to minimize bu�er mem�
ory� This procedure of low polynomial time complexity has been shown to give
optimal results for a certain class of graphs having a regular structure� Also� a
complementary procedure called RPMC for recursive partitioning by minimum
cuts� has been proposed that works well on more irregular e�g�� randomly gener�
ated� graph structures� Experiments show that� although being computationally
e�cient� these heuristics sometimes produce results that are far from optimal�
Even simple test cases may be constructed where the performance bu�er cost�
obtained by applying these heuristics di�ers from the global minimum by more
than 
����� see Example 	�

Example �� We consider two test graphs and compare di�erent bu�er optimiza�
tion algorithms see Table 	�� The 	st graph with 	� nodes is shown in Fig� 	b��
For this simple graph� already ��
 ��� di�erent topological sorts actor �ring
orders� may be constructed with bu�er requirements ranging between ���� and
	� ��� memory units� The 
nd graph is randomly generated with �� nodes� The
	st method in Table 	 uses an Evolutionary Algorithm EA� that performs ����
�tness calculations� the 
nd is the APGAN heuristic� the �rd is a Monte Carlo

simulation ���� random tries�� and the �th an exhaustive search procedure
which did not terminate in the second case�
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Fig� �� Simple SDF graphs�

The motivation of the following work was to develop a methodology that is

Graph � Graph �
method best cost �units� runtime �s� best cost �units� runtime �s�
EA ���� ��	
 ��� �� 	�
�

APGAN ���	 ���� �	 ��� �	� ��
RPMC ��	� ���� � �
 ��� ����
Monte Carlo ���� ��� � ��� ��� ������
Exhaust� Search ���� �
� � �

Table �� Analysis of existing heuristics on simple test graphs� The run�times were
measured on a SUN SPARC ���



� Cost�competitive� the optimization procedure should provide solutions with
equal or lower bu�ering costs as the heuristics APGAN and RPMC in most
investigated test cases�

� Run�time tolerable� in embedded DSP applications� compilers are allowed to
spend more time for optimization of code as in general�purpose compilers�
because code�optimality is critical �	���

��� Proposed Approach

Here� we use a unique two�step approach to �nd bu�er�minimal schedules�
	� An Evolutionary Algorithm EA� is used to e�ciently explore the space of
topological sorts of actors given an SDF graph using a population of N individ�
uals each of which encodes a topological sort�

� For each topological sort� a bu�er optimal schedule is constructed based
on a well�known dynamic programming post optimization step �
� that deter�
mines a loop nest by parenthesization see Fig� 
� that is bu�er cost optimal for
the given topological order of actors�� The run�time of this optimization step is
ON��� The overall picture of the scheduling framework is depicted in Fig� 
�
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Fig� �� Overview of the scheduling framework using Evolutionary Algorithms and Dy�
namic Programming �GDPPO� generalized dynamic programming post optimization
for optimally parenthesizing actor orderings ��� for constructing bu�er memory opti�
mal schedules�

Details on the optimization procedure and the cost function will be explained in
the following� The total run�time of the algorithm is OZ N�� where Z is the
number of evocations of the dynamic program post�optimizer�

� An Evolutionary Approach for Memory Optimization

��� The SDF�scheduling framework

De�nition � SDF graph� An SDF graph �	
� G denotes a ��tuple G �
V�A� produced� consumed� delay� where
� V is the set of nodes actors� V � fv�� v�� � � � � vKg��
� A is the set of directed arcs� With source�� sink���� we denote the source
node target node� of an arc � � A�



� produced � A � N denotes a function that assigns to each directed arc
� � A the number of produced tokens produced�� per invocation of actor
source���

� consumed � A � N denotes a function that assigns to each directed arc
� � A the number of consumed tokens per invocation of actor sink���

� delay � A � N� denotes the function that assigns to each arc � � A the
number of initial tokens delay���

A schedule is a sequence of actor �rings� A properly�constructed SDF graph
is compiled by �rst constructing a �nite schedule S that �res each actor at least
once� does not deadlock� and produces no net change in the number of tokens
queues associated with each arc� When such a schedule is repeated in�nitely�
we call the resulting in�nite sequence of actor �rings a valid periodic schedule�
or simply valid schedule� Graphs with this property are called consistent� For
such a graph� the minimum number of times each actor must execute may be
computed e�ciently �	
� and captured by a function q � V � N�

Example �� Figure 	a� shows an SDF graph with nodes labeled A�B�C�D� re�
spectively� The minimal number of actor �rings is obtained as qA� � �� qB� �
qC� � 	
� qD� � �� The schedule �
ABC�DABCDBC
ABCD�A
BC�

ABC�A
BCD�� represents a valid schedule� A parenthesized term
n S� S� � � � � Sk� speci�es n sucessive �rings of the �subschedule� S� S� � � � Sk�

Each parenthesized term n S� S� � � � Sk� is referred to as schedule

loop having iteration count n and iterands S�� S�� � � � � Sk� We say that a
schedule for an SDF graph is a looped schedule if it contains zero or more
schedule loops� A schedule is called single appearance schedule if it con�
tains only one appearance of each actor� In general� a schedule of the form
� qN��N�� qN��N�� � � � qNK�NK�� where Ni denotes the label of the�
ith node of a given SDF graph� and K denotes the number of nodes of the given
graph� is called �at single appearance schedule�

��� Code generation and bu�er cost model

Given an SDF graph� we consider code generation by inlining an actor code block
for each actor appearance in the schedule� The resulting sequence of code blocks
is encapsulated within an in�nite loop to generate a software implementation�
Each schedule loop thereby is translated into a loop in the target code�
The memory requirement is determined by the cost function

buffer memoryS� �
X

��A

max tokens�� S�� 	�

where max tokens�� S� denotes the maximum number of tokens that accumu�
late on arc � during the execution of schedule S��

� Note that this model of bu�ering � maintaining a separate memory bu�er for each
data �ow edge � is convenient and natural for code generation� More technical ad�
vantages of this model are elaborated in ����



Example 	� Consider the �at schedule ��A�	
B�	
C��D�� for the graph
in Fig� 	a�� This schedule has a bu�er memory requirement of �� �
	
 � 
� � �
� Similarly� the bu�er memory requirement of the schedule
���A��B����C�
D��� is 	
 � 	
 � � � ���

��� Related Work
The interacion between instruction scheduling and register allocation in procedu�
ral language compilers has been studied extensively ���� and optimal management
of this interaction has been shown to be intractable ���� More recently� the is�
sue of optimal storage allocation has been examined in the context of high�level
synthesis for iterative DSP programs ���� and code generation for embedded pro�
cessors that have highly irregular instruction formats and register sets �	�� 	���
These e�orts do not address the challenges of keeping code size costs manageable
in general SDF graphs� in which actor production and consumption parameters
may be arbitrary� Fabri ��� and others have examined the problem of managing
pools of logical bu�ers that have varying sizes� given a set of bu�er lifetimes� but
such e�orts are also in isolation of the scheduling problems that we face in the
context of general SDF graphs�
From Example 	� it became clear that there exist simple graphs for which

there is a big gap between the quality of solution obtained using heuristics such
as APGAN and an Evolutionary Algorithm EA�� If the run�time of such an
iterative approach is still a�ordable� a performance gap of several orders of mag�
nitude may be avoided�

Exploration of topological sorts using the EA Given an acyclic SDF
graph� one major di�culty consists in �nding a coding of feasible topological
sorts� Details on the coding scheme are given in the next section that deals with
all implementation issues of the evolutionary search procedure�

Dynamic programming post optimization In �
�� it has been shown that
given a topological sort of actors of a consistent� delayless and acyclic SDF graph
G� a single�appearance schedule can be computed that minimizes bu�er memory
over all single�appearance schedules for G that have the given lexical ordering�
Such a minimum bu�er memory schedule can be computed using a dynamic
programming technique called GDPPO�

Example 
� Consider again the SDF graph in Fig� 	a�� With qA� � �� qB� �
qC� � 	
� and qD� � �� an optimal schedule is ���A��B����C�
D���
with a bu�er cost of ��� Given the topological order of nodes A�B�C�D as
imposed by the arcs of G� this schedule is obtained by parenthesization of the
string� Note that this optimal schedule contains a break in the chain at some
actor k� 	 � k � K� 	� Because the parenthesization is optimal� the chains to
the left of k and to the right of k must also be parenthesized optimally� This
structure of the optimization problem is essential for dynamic programming�

� Parameterization of the Evolutionary Algorithm

The initial population of individuals� the phenotype of which represents a topo�
logical sort� is randomly generated� Then� the population iteratively undergoes
�tness evaluation Eq� 	�� selection� recombination� and mutation�



��� Coding and Repair Mechanism
The optimization problem suggests to use an order�based representation� Each
individual encodes a permutation over the set of nodes� As only topological sorts
represent legal schedules� a simple repair mechanism transforms a permutation
into a topological sort as follows� Iteratively� a node with an indegree equal to
zero is chosen and removed from the graph together with the incident edges��
The order in which the nodes appear determines the topological sort� The tie
between several nodes with no ingoing edges is normally broken by random�
Our algorithm� however� always selects the node at the leftmost position within
the permutation� This ensures on the one hand� that each individual is mapped
unambiguously to one topological sort� and� on the other hand� that every topo�
logical sort has at least one encoding�

Example �� Recall the SDF graph depicted in Figure 	b�� and suppose� the repair
algorithm is working on the permutation BCDEFAGHIJ� Since the node A has
no ingoing edges but is predecessor of all other nodes� it has to be placed �rst in
any topological sort� The order of the remaining nodes is unchanged� Therefore�
the resulting topological sort after the repair procedure is ABCDEFGHIJ�

��� Genetic Operators
The selection scheme chosen is tournament selection� Additionally� an elitist

strategy has been implemented� the best individual per generation is preserved
by simply copying it to the population of the next generation� Since individuals
encode permutations� we applied uniform order�based crossover ������� which pre�
serves the permutation property� Mutation is done by permuting the elements
between two selected positions� whereas both the positions and the subpermu�
tation are chosen by random scramble sublist mutation �����

��� Crossover Probability and Mutation Probability
We tested several di�erent combinations of crossover probability pc and mutation
probability pm on a few random graphs containing �� nodes�

�

Based on experimental results� we have chosen a population size of �� in�
dividuals� The crossover rates we tested are �� ��
� ���� ���� and ���� while the
mutation rates cover the range from � to ��� by a step size of ��	� Altogether�
the EA ran with 
� various pc�pm�settings on every test graph� It stopped af�
ter ���� �tness evaluations� For each combination we took the average �tness
bu�er cost� over ten independent runs� Exemplary� the results for a particular
graph are visualized by the �D plot in Figure �� the results for the other random
test graphs look similar�
Obviously� mutation is essential to this problem� Setting pm to � leads to the

worst results of all probabilty combinations� If pm is greater than �� the obtained
average bu�er costs are signi�cantly smaller almost independently of the choice
of pc� As can be seen in Figure � this is due to premature convergence� The curve

� Graphs consisting of less nodes are not very well suited to obtain reliable values
for pc and pm� because the optimum is yet reached after a few generations� in most
cases�
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Fig� �� In�uence of the crossover probability pc and the mutation probability pm on
the average �tness for a particular test graph ����� �tness evaluations�

representing the performance for pc � ��
 and pm � � goes horizontally after
about 	�� �tness evaluations� No new points in the search space are explored�
As a consequence� the Monte Carlo optimization method� that simply generates
random points in the search space and memorizes the best solution� might be a
better approach to this problem� We investigate this issue in the next section�

On the other hand� the impact of the crossover operator on the overall per�
formance is not as great as that of the mutation operator� With no mutation at
all� increasing pc yields decreased average bu�er cost� But this is not the same to
cases where pm � �� The curve for pc � ��� and pm � ��
 in Figure � bears out
this observation� Beyond it� for this particular test graph a mutation probability
of pm � ��
 and a crossover probability of pc � � leads to best performance�
This might be interpreted as hint that Hill Climbing is also suitable in this do�
main� The Hill Climbing approach generates new points in the search space by
applying a neighborhood function to the best point found so far� Therefore� we
also compared the Evolutionary Algorithm to Hill Climbing�

Nevertheless� with respect to the results on other test graphs� we found a
crossover rate of pc � ��
 and a mutation rate of pm � ��� to be most appropriate
for this problem�
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Fig� �� Performance of the Evolutionary Algorithm according to four di�erent
pc�pm�combinations� each graph represents the average of ten runs�



System BMLB APGAN RPMC MC HC EA EA � APGAN
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Table �� Comparison of performance on practical examples� the probabilistic algo�
rithms stopped after ���� �tness evaluations� BMLB stands for a lower bu�er limit�
bu�er memory lower bound��

� Experiments

To evaluate the performance of the Evolutionary Algorithm we tested it on sev�
eral practical examples of acyclic� multirate SDF graphs as well as on 
�� acyclic
random graphs� each containing �� nodes and having 	�� edges in average� The
obtained results were compaired against the outcomes produced by APGAN�
RPMC� Monte Carlo MC�� and Hill Climbing HC�� We also tried a slightly
modi�ed version of the Evolutionary Algorithm which �rst runs APGAN and
then inserts the computed topological sort into the initial population�
Table 
 shows the results of applying GDPPO to the schedules generated by

the various heuristics on several practical SDF graphs� the satellite receiver ex�
ample is taken from �	��� whereas the other examples are the same as considered
in �
�� The probabilistic algorithms ran once on each graph and were aborted
after ���� �tness evaluations� Additionally� an exhaustive search with a maxi�
mum run�time of 	 hour was carried out� as it only completed in two cases	� the
search spaces of these problems seem to be rather complex�

In all of the practical benchmark examples that make up Table 
 the results
achieved by the Evolutionary Algorithm equal or surpass the ones generated
by RPMC� Compared to APGAN on these practical examples� the Evolution�
ary Algorithm is neither inferior nor superior� it shows both better and worse
performance in two cases each� Furthermore� the performance of the Hill Climb�
ing approach is almost identical to performance of the Evolutionary Algorithm�
The Monte Carlo simulation� however� performs slightly worse than the other
probabilistic approaches�

� Laplacian pyramid �minimal bu�er cost� ��� QMF �lterbank� one�sided tree �mini�
mal bu�er cost� ����

� The following systems have been considered� � fractional decimation� � Laplacian
pyramid� � nonuniform �lterbank ����� ��� splits� 
 channels� 
 nuniform �lter�
bank ����� ��� splits� � channels� � QMF nonuniform�tree �lterbank� � QMF
�lterbank �one�sided tree� 	 QMF analysis only� � QMF tree �lterbank �
 chan�
nels� � QMF tree �lterbank �� channels� �� QMF tree �lterbank ��� channels�
�� satellite receiver�



� APGAN RPMC MC HC EA EA �
APGAN

APGAN �� ���	� �	� �� �� ��
RPMC �	�	� �� ���	� ��	� ��	� ��	�
MC 	� 
��	� �� ��	� ��	� ��
HC ���� ���	� ���	� �� 
�� 	
�
EA ��� �	�	� ���	� ��� �� ���

EA � APGAN ���� �
�	� ��� ���	� 	��	� ��

Table �� Comparison of performance on ��� ���actor SDF graphs ����� �tness eval�
uations� for each row the numbers represent the fraction of random graphs on which
the correspondig heuristic outperforms the other approaches�

Although the results are nearly the same when considering only 	��� �tness
evaluations� the Evolutionary Algorithm as well as Monte Carlo and Hill Climb�
ing� cannot compete with APGAN or RPMC concerning run�time performance�
E�g�� APGAN needs less than 
�� second for all graphs on a SUN SPARC 
��
while the run�time of the Evolutionary Algorithm varies from ��	 seconds up to
� minutes ���� �tness evaluations��

The results concerning the random graphs are summarized in Table �� again�
the stochastic approaches were aborted after ���� �tness evaluations�
 Interest�
ingly� for these graphs APGAN only in 	�� of all cases is better than Monte
Carlo and only on in two cases better than the Evolutionary Algorithm� On the
other hand� it is outperformed by the Evolutionary Algorithm ��� of the time�

This is almost identical to the comparison between Hill Climbing and APGAN�
As RPMC is known to be better suited for irregular graphs than APGAN �
��
its better performance ������ is not surprising when directly compared to AP�
GAN� Although� it is beaten by the Evolutionary Algorithm as well as Hill
Climbing in ����� and ����� of the time� respectively�

The obtained results are very promising� but have to be considered in as�
sociation with their quality� i�e�� the magnitude of the bu�er costs achieved� In
�	��� this issue is investigated in detail� In average the bu�er costs achieved by
the Evolutionary Algorithm are half the costs computed by APGAN and only a
fraction of ��� of the RPMC outcomes� Moreover� an improvement by a factor

� can be observed on a particular random graph with respect to APGAN fac�
tor 	� regarding RPMC�� Compared to Monte Carlo� it is the same� although
the margin is smaller in average the results of the Evolutionary Algorithm are
a fraction of ����� of the costs achieved by the Monte Carlo simulation�� Hill
Climbing� however� might be an alternative to the evolutionary approach� the
results shown in Table � might suggest a superiority of Hill Climbing� but re�
garding the absolute bu�er costs this hypothesis could not be con�rmed the
costs achieved by the Evolutionary Algorithm deviate from the costs produced
by Hill Climbing by a factor of ��	�� in average��

� The Evolutionary Algorithm ran about � minutes on each graph� the time for running
APGAN was constantly less than � seconds�

� Considering ���� �tness calculations� this percentage decreases only minimally to
�	����



� Conclusions
In summary� it may be said that the Evolutionary Algorithm is superior to both
APGAN and RMPC on random graphs� However� both might also be random�
ized� and thus provide other candidates for comparison� a topic of future research�
A comparison with simulated annealing might also be interesting� However� this
general optimization method o�ers many implementation trade�o�s such that a
qualitative comparison is not possible except under many restricted assumptions�
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