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ABSTRACT
The prediction of the native structures of proteins, the so-
called protein folding problem, is a NP hard multi-minima
optimization problem for which to date no routine solutions
exist. Using an evolutionary approach we have addressed
a problem that is related to protein folding though much
simpler: the computational improvement of small proteins
or peptides with respect to stability and biological function.
The solution of this problem is relevant for the life sciences,
e.g. because it would help to optimize peptide drugs.

In a first experiment we used the proposed algorithm to
stabilize a previously destabilized mutant of the otherwise
stable folding Villin Headpiece. The algorithm generated
amongst others a sequence that reverted the destabilizing
mutation and introduced a second mutation. In terms of the
used model this second mutation resulted in a more stable
peptide than the original Villin Headpiece.

Categories and Subject Descriptors
J.3 [Computer Applications]: Life and Medical Sciences—
Biology and Genetics ; G.3 [Mathematics of Computing]:
Probability and Statistics—Probabilistic Algorithms

General Terms
Algorithms

Keywords
Evolutionary algorithm, multi-objective optimization, pep-
tide design

1. INTRODUCTION
Currently several peptides are used as drugs. Prominent

examples are the well-known peptide insulin, the major drug
against diabetes, or, more recently, the anti-HIV peptide
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T20 [16]. Nevertheless, in comparison to conventional small-
molecule drugs, peptides are not ideal as drugs; for instance,
they are relatively large and thus have difficulties to cross
biological barriers [35], and they are often flexible or confor-
mationally unstable which leads to high entropy losses on
binding to their target molecules and thus to low affinities
to these molecules [31].

Hence, methods that optimize the stability of the “ac-
tive” peptide conformation while limiting peptide size are
valuable. Today, such optimizations are usually achieved
by labour-intensive experimental wet-lab methods, such as
site-directed mutagenesis, phage display and others [33]. An
in silico method that automatically optimizes peptide se-
quences would be an attractive supplement to these meth-
ods. Unfortunately, it is difficult to accurately predict pep-
tide properties such as stability ab initio – such a prediction
in a way implies the solution of the protein folding problem.
However, if a reliable starting point is available, e.g. an
experimentally determined peptide structure, point muta-
tions could be applied in a stepwise fashion and their effects
predicted more reliably. Since already small changes to the
sequence have the potential of changing peptide properties
significantly [13, 9, 21] even such a conservative in silico ap-
proach could be helpful. Similar approaches are in use for
different applications in drug design [14, 15].

Here, we propose a multi-objective evolutionary algorithm
that stabilizes a peptide in an active conformation, or more
precisely, an algorithm that changes a peptide sequence such
that the key parts of the peptide responsible for biological
activity have a higher propensity of being in the active con-
formation.

Such an approach ranges in the field of in silico protein
structure prediction, protein folding and drug design. Espe-
cially in the recent years there has been progress regarding
the used methods [10, 34, 28, 24] and models [12, 30, 39,
22]. The achievements of these methods are documented in
[20, 27, 29, 19].

We present first results obtained for the stabilization of
the unstable mutant F18K of the Villin headpiece, a stably
folding 36mer [25] for which an experimentally determined
structure is available. The instability of mutant F18K – it
carries a mutation at residue 18 from phenylalanine (F) to
lysine (K) – has been measured experimentally [13]. During
the redesign the algorithm was not only able to re-stabilize
the mutant but also to predict stability enhancing muta-
tions. Amongst some multi site mutants, which were mu-
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Figure 1: General chemical structure of an amino
acid with central Cα atom, amino group, carboxy
group and side chain.

tated at up to nine different sites, there was one mutant that
reversed the destabilizing mutation and further improved
the stability by mutating a second amino acid, namely a
mutation of residue 34 from the native glycine to leucine,
for short: G34L.

2. BIOLOGICAL BACKGROUND
We first give a few chemical basics on peptides to help

the understanding of some features of the algorithm and of
the methods used by the algorithm. Peptides are chains
of amino acids. Amino acids consist of an amino group, a
carboxylate group and a sidechain which are all linked to a
central carbon atom (Cα) (Fig. 1). Peptides are formed by
covalent “peptide” bonds between the carboxylate group of
one amino acid and and the amino group of another amino
acid. Fig. 2 shows a di-peptide, the smallest possible pep-
tide. The main chain or “backbone” made up of successive
Cα–C–N–Cα units of the peptide can be prolonged arbitrar-
ily by adding more amino acids in this way at either end of
the peptide. The sidechains are the variable regions of amino
acids that can be positively or negatively charged, hydropho-
bic or polar, etc. Peptides and proteins are made up from
a repertoire of the 20 most common amino acids, and the
frequency and sequence of their respective sidechains deter-
mine the physico-chemical properties and biological function
of the peptides [7].

Many proteins or larger peptides adopt a specific well-
defined stable conformation or “native fold” which is solely
determined by the respective sequence of amino acids [1].
According to equilibrium statistical mechanics this native

Figure 2: Two amino acids connected via a peptide
bond – a di-peptide. By adding more amino acids
in this way, peptides of arbitrary length can be gen-
erated.

fold corresponds to the minimum of the free energy of the
peptide in its aqueous environment and thus to the most
probable conformation. Minimizing the free energy of a
conformation thus means maximizing the probability of the
peptide of adopting this conformation. In our approach we
equate this probability with the observed relative frequency
of this conformation in simulations of the peptide dynamics.

3. APPROACH
We present an evolutionary algorithm that changes given

peptide sequences towards sequences with increased propen-
sity for a specific conformation.

Starting with a number of copies of a sequence with known
structure (individuals) the algorithm carries out an itera-
tive (generation based) optimization process that in each
step slightly alters the individuals. Following the argument
in the introduction we have restricted sequence changes in
each generation to single point mutations. In this way we
are able to predict rather reliably the effects of changes while
we still have the potential of improving the sequence signif-
icantly. Larger changes such as crossover would in general
cause global rearrangements that are much harder to pre-
dict.

Our algorithm preferentially changes the sequence in a
way that promises to lead to improved conformational sta-
bility. The site and type of mutation are determined by a
method that is inspired by in vitro alanine scan. However,
instead of measuring the effect of a mutation experimentally
we estimate the changes of free energy by approximations
described in the Methods section.

Typically, functional peptides carry a few key residues
that are essential for their biological action, often arranged
in surface exposed loops. Therefore to preserve the bio-
activity of the input peptide the algorithm allows to exclude
a user defined loop of key residues from the mutation pro-
cess.

The peptides were optimized with respect to at least two
different attributes, namely the conformational stability of
the peptide and the deviation of accessibility of the key
residue loop. Quantifiers for an aggregated optimization
approach are unknown. Hence, we have chosen a multi-
objective EA (MOEA) with two fitness criteria: (1) struc-
tural stability of the peptide, and (2) root mean square devi-
ation (RMSD) of the accessibility, whereas a third criterion,
RMSD of key residues, is used to influence the mutation
process. The fitness criteria are evaluated based on data
from molecular dynamics (MD) trajectories of the peptides
in aqueous solution (for details on MD see Methods section).

After having evaluated the offspring individuals a selec-
tion process takes place. The next generation is chosen
from the set of offspring individuals and the former gen-
eration using tournament selection [2]. To identify the win-
ning individual of a tournament the dominance-relation (see
Def. 1) is used. The two fitness criteria stability and acces-
sibility RMSD are regarded. If the individuals participat-
ing in a tournament are equal or incomparable in terms of
the dominance-relation the tournament winner is randomly
chosen. Apart from the individuals chosen via tournaments
some individuals are chosen using elitism [11]. Therefore
an archive of non-dominated (see Def. 2) individuals is kept
which is updated after each generation. From this archive a
fixed number of individuals is randomly chosen and inserted
into the newly formed generation.
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Figure 3: Scheme of the evolutionary algorithm
used for peptide optimization. The contents of the
dashed boxes are explained in detail in the Methods
section.

Definition 1. Dominance-relation
Multi-objective optimization aims at simultaneously opti-
mizing m objectives F = (f1, . . . , fm) : Rn → Rm de-
pending on a vector of n parameters or decision variables
X = (x1, . . . , xn). These parameters may have to adhere to
a set of k constraints gi(X) ≥ 0 ∀i ∈ {1, . . . , k}. Without
loss of generality it can be assumed that all objectives are
to be minimized.
Given two individuals represented by the two vectors X1

and X2 it is said that X1 strictly dominates X2 (denoted
X1 Â X2) if following is true:

fi(X1) ≤ fi(X2) ∀i ∈ {1, . . . , m} ,

F (X1) 6= F (X2) .

Definition 2. Non-dominated individual
Given a set of individuals represented by vectors of decision
variables, an individual Xnon−dom is non-dominated if no
other member of the set dominates Xnon−dom in terms of
the dominance-relation.

The optimization process stops after a previously deter-
mined number of generations. Figure 3 shows the scheme of
the algorithm.

Stability
The basis of the stability estimation for a given sequence
in a predefined conformation is a MD trajectory of the re-
spective peptide molecule in aqueous solution over 10ns at
room temperature. The trajectory file is divided into a set of
frames, each displaying a conformation adopted during the
MD run. For each of these frames the RMSD of all atoms of
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Figure 4: Traces of RMSD to native structures along
20ns MD trajectories for two peptides with sta-
ble folds, Villin headpiece and Ubiquitin. As start
conformations the conformations recorded in the
Brookhaven Protein Databank (PDB) were used.

the conformation represented by the frame to all atoms of
the start conformation is computed. Afterwards the propor-
tion of the frames with a RMSD below a certain threshold is
calculated. The size of this proportion is taken as stability
measure. A threshold of 3.5Å is taken. This threshold is
obtained empirically by analyzing the MD runs of two dif-
ferent stable folding peptides (cp. Fig. 4) recorded in the
Brookhaven Protein Databank (PDB) [5], Villin headpiece
(PDB ID 1VII) [25] and Ubiquitin (PDB ID 1UBQ) [37].

Accessibility
Typically, binding sites and other functional regions are lo-
cated on the surface of the molecule, accessible to the bind-
ing partner. Hence, we adopted as one optimization crite-
rion the accessibility of the binding loop. Since it is difficult
to compute the accessibility to the binding partner without
knowledge of the geometry of this molecule, we used as a
simple approximation the accessibility of the binding loop
to water, which seems to be a minimum requirement. As
the actual optimization objective we used the minimization
of the residuewise RMSD of the solvent accessible surface of
the loop in (a) the current and (b) the initial conformation,
the latter being the reference conformation with respect to
accessibility. The solvent accessible surfaces was computed
with the program naccess [18].

RMSD of key residues
As mentioned above it is possible to exclude certain residues
from the mutation process, e.g. key residues that presum-
ably are essential for binding. We go a step further and
use the RMSD of these key residues of the conformations
adopted during a MD run from a given “active” conforma-
tion to influence the choice of the mutation site. This ought
to result in conformations better reflecting the topography
of the functional loop in its ”active” conformation and there-
fore resulting in good bio-activity.
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4. METHODS

Molecular Dynamics (MD)
MD simulates trajectories of interacting atoms in space by
integrating their equations of motion. As computing power
is not sufficient for accurate simulations of large biomolecu-
lar systems at the quantum mechanical level, atoms are usu-
ally modeled by classical force fields using simplified bonded
and non-bonded (Van der Waals, Coulomb, etc.) interaction
potentials. This model is still sufficiently accurate for direct
quantitative comparisons with experiment. For a detailed
description of the MD program Gromacs and the potentials
used in the present work see [4, 23, 36]. Despite the sim-
plified potentials the run times for the generation of a MD
trajectory are often large because many atom–atom interac-
tions have to be considered. Typically, production of a 10ns
trajectory of a peptide in aqueous solution took a runtime
of the order of one day on a machine with a single XEON
3.04GHz processor and 1GB of RAM. This made MD simu-
lation the most expensive component of our method. Never-
theless, we decided to use MD with a detailed model because
this facilitates comparison with experiment. Mostly, several
MD runs were performed in parallel on 32 processors of a
PC cluster.

Alanine scan
In vitro alanine scans are a well established technique that
is used to identify residues that have certain biological func-
tions in proteins and peptides [6, 26]. Basically, it is a mu-
tagenesis experiment in which each amino acid in turn is ex-
changed for an alanine. Alanine is the amino acid with the
smallest sidechain, a single methyl group (Glycine is even
smaller but has no sidechain at all and thus is very flexi-
ble; in this sense it is an untypical amino acid). In essence,
replacement of a non-Glycine amino acid by alanine means
reduction of the sidechain to a minimum. If an amino acid
can be replaced by alanine without significant loss of “activ-
ity” (e.g. stability, or affinity to some other molecule) this
means that the removed sidechain is probably not essential
in this respect. On the other hand, a change of activity
due to the loss of the sidechain implies some role of this
sidechain.

We used a computational variant of alanine scanning to
estimate the contribution of an amino acid to the conforma-
tional stability of a peptide in a desired conformation CD,
and to predict stabilizing mutations. Shortly, for a pep-
tide of n amino acids of which k residues were considered
to be key residues, we generated n− k sequences by replac-
ing residue i by alanine while leaving all other n − k − 1
sequence positions unchanged. For each of these sequences
we then computationally estimated the stability of CD. The
sequence position where mutation to alanine led to the great-
est stabilization of CD was considered a candidate position
for a stabilizing mutation. At these candidate positions we
then computationally tested the effects of all possible muta-
tions.

In detail, the alanine scan was performed as follows. In
order to quantify the stability of the key residue loop con-
formation CD we had first to define two representative sets
of conformations, one set with a loop conformation similar
to CD, and a second set with a larger conformational de-
viation. Stability of CD then means that the first set has
a lower free energy than the second one. Hence, first two

sets of conformations were extracted from the MD trajec-
tory of the peptide of the previous generation: a set Nlow

of conformations with low conformational RMSD (< 1.15Å)
of the key residues to CD, and a set Nhigh of conforma-
tions with a high RMSD to CD (> 1.65Å). The thresholds
of 1.15 Å and 1.65 Å have been determined empirically; the
rationale for choosing thresholds between 1 and 2 Å is that
structures with an RMSD of around 1 Å and less can sat-
isfy the same local binding pattern of hydrogen bonds and
hydrophobic contacts, whereas larger RMSDs are in general
not compatible with the same binding pattern. If available,
up to ten conformations below and above the thresholds,
respectively, were chosen randomly from the MD trajectory
for each of the two sets Nlow, Nhigh. Two conformations
were always put into the two sets: the conformation of low-
est RMSD recorded in the trajectory was always a member
of Nlow, and the conformation of largest RMSD always part
of Nhigh. Note that the use of RMSD thresholds implies
optimization of peptides towards small RMSDs to CD.

After having prepared Nhigh and Nlow the stability of
CD for the parent sequence and for each of the n − k se-
quences generated by alanine exchanges had to estimated.
The essential physical quantity here is the free energy G,
that we approximated by a widely used expression shown in
Eq. (1), with the conformational part Gff calculated with a
classical force field, the non-polar part Gnp of the peptide-
water interaction assumed to be linearly dependent on the
solvent accessible surface [8], and the polar part Ges of the
peptide-water interaction computed with a classical contin-
uum electrostatics approach [17]. Technically, the Gff was
computed with Gromacs [4, 23], Gnp with a the solvent ac-
cessible surface obtained with naccess [18] and a surface ten-
sion constant of 40 J/Å2, and Ges was computed with the
program solvate [3] using PARSE van der Waals radii [32]
for the peptide atoms.

G = Gff + Gnp + Ges , (1)

∆Gj,i = GCU,j ,i −GCD,i . (2)

Using Eq. 1 we could identify amongst the Nlow confor-
mations of the parent sequence the conformation with the
lowest free energy. We treated this single conformation in
the following as CD. After this, all alanine mutants were
prepared for CD and all conformations in Nhigh using the
modeling program WhatIf [38]. For all of these sequence–
conformation pairs we computed the free energy difference
∆Gj,i (Eq. 2). Assuming a Boltzmann distribution of free
energies, the ratio of probabilities of CU,j and CD for the
same sequence i is given by

p(CU,j , i)

p(CD, i)
= exp

ş
−∆Gj,i

RT

ť
, (3)

with the gas constant R and the absolute temperature T .
It can be expected for a sequence position i that the higher
the stability of CD the smaller becomes the term Pi given
in Eq. 4.

Pi =
PNhigh

j=1

p(CU,j ,i)

p(CD,i)
. (4)

Pi was computed for all alanine mutation positions i and
one of these positions selected at random with a probability
inversely proportional to Pi.
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After a position of a mutation had been chosen in this
way by alanine scanning, we mutated this site into all pos-
sible amino acids. Using an analogous formalism and the
same computational techniques as described above, we then
selected one of these amino acids according to its stabilizing
effect.

Our double-mutation strategy – first each residue test-
wise into alanine, then the actual mutation into some other,
hopefully stabilizing, amino acid – samples only a small
fraction of sequence changes that are possible in one step,
namely n − k + 19 vs. (n − k) · 19. Hence, it is likely that
we missed mutations that increase stability. However, com-
puting all the full energies of (n − k) · 19 possible one-step
mutants would be very costly, since already a single alanine
scan followed by selection of a new amino acid took half a
day on a 3.04GHz XEON dual processor. Thus our strategy
is a compromise between the requirements of high accuracy
and low cost.

5. RESULTS AND DISCUSSION
We tested our approach by carrying out computer exper-

iments with Villin headpiece (VH). VH is a good test-case
for such experiments for several reasons. Firstly, it is one of
the smallest peptides known that folds autonomously into a
stable and well-defined native conformation. Secondly, high
resolution structural data for VH is available [25] which gives
us validated conformational reference. Thirdly, the role of
several residues for the stability of VH was investigated [13]
experimentally; in these studies it was found that a set of
hydrophobic amino acids are crucial for stability.

These experimental studies suggested a test for our al-
gorithm: if we perturb the wild type sequence of VH by
replacing one of the stabilizing hydrophobic amino acids by
a strongly polar one, this should lead to a destabilized na-
tive conformation of this VH mutant; our algorithm should
then be able to predict that reverting to the unperturbed
wild type sequence will result in a stabilization of the native
VH conformation.

To test our algorithm we created the VH mutant F18K,
where the stabilizing hydrophobic phenylalanine at position
18 [13] was changed to a polar, and presumably destabiliz-
ing lysine. We first simulated the wild type and the F18K
mutant using MD in aqueous solution and found indeed that
the wild type sequence was stable in its experimentally de-
termined native conformation whereas the mutant left this
conformation quickly and remained highly mobile through-
out the simulation (Fig. 5).

Then we subjected the F18K sequence to the evolution-
ary optimization method described above with the native
conformation of wild type VH as desired conformation CD.
Run parameters are summarized in Tab. 1. The number of
generations was limited by the available CPU-time to 15.
A whole run then took about three weeks with a cluster of
14 CPUs. The outcome of the optimization was surprising.
The method came up with variants that, according to our
computational approximation, are more stable in the native
VH conformation than the VH wild type sequence (Fig. 5).

In one of these variants the method reverted the mutation
F18K (in generation three) by a back mutation K18F, and
further on introduced a new mutation G34L (in generation
one). The set of sequences covering all double mutants of a
36-residue peptide, such as VH, and using the full alphabet
of 20 amino acids has about (36·20)2 = 518400 elements; the

0 2000 4000 6000 8000 10000
Time (ps)

0

0,2

0,4

0,6

0,8

1

R
M

SD
 (

nm
)

Villin headpiece
enhanced Villin
F18K.xvg

RMSD
Protein after lsq fit to Protein

Figure 5: RMSD trace over 10ns MD simulations
of three peptides to the native, experimentally de-
termined structure of Villin headpiece (VH). Light
grey: wild type VH sequence. Dashed: the unsta-
ble VH mutant F18K. Solid black: the G34L mutant
of VH showing enhanced stability in the native VH
conformation.

actual number is somewhat smaller because back-mutations
can occur that do not contribute new sequences. It can be
assumed that with respect to the wild type conformation
most of these sequences are less stable than the wild type
sequence and only a few sequences are more stable. Our
algorithm generated 15 · 8 = 120 sequences. The fact that
amongst these it found not only the K18F reversion but in
addition a second mutant that, according to the calculation
surpasses the stability of the wild type is encouraging in view
of the accuracy of the physical model and the efficiency of
the evolutionary algorithm.

On the other hand one may ask why nature has not found
this more stable VH variant. Several reasons are imaginable:
VH is part of the larger protein Villin, and nature may have
optimized Villin as a whole and not only VH; the glycine at
position 36 may have a particular biological function that
cannot be fulfilled by leucine at that position; the G34L
mutant may be not soluble in water and thus not functional;
the computational prediction of the higher G34L stability

Table 1: Parameters of computer experiment with
VH and mutants.

Parameter Value
Algorithm Parameters

Generations 15
Population size 8
Tournament size 2
Elitism best individual

MD Parameters
Duration of each MD run 10ns
Coulomb cut-off 1.4nm
van der Waals cut-off 1.0nm
Temperature 300K
Temperature coupling algorithm Nose-Hoover
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could be incorrect because we may not have accumulated
enough data in the MD simulations that are the basis of
stability estimation.

Apart from the formerly described double mutant the al-
gorithm proposed an ensemble EnA of multi site mutated
sequences. These four sequences carried five to nine mu-
tations, which reversed the character of the present amino
acids from hydrophobic to hydrophilic or vice versa. This
change in peptide surface properties results in a change of
the peptide backbone conformations. The RMSDs of these
multi site mutants compared to the VH native conforma-
tion ranged from 5.5Å to 6.4Å whereas the double mutant
showed a backbone RMSD of 2.2Å. We checked our results
by repeating the run. Again the algorithm proposed an en-
semble EnB of multi site mutants (four to seven mutations)
with enhanced stability; the RMSD of EnB to the native VH
conformation was 2.6Å to 2.8Åİnterestingly, the two ensem-
bles (EnA, EnB) show a common, stability enhancing set
of mutation sites. This set of sites consists of the sequence
positions 2, 29, 32, 33, 34. The existence of such a common
set supports the view that the results of the algorithm are
reproducible.

Another interesting fact is that contrary to the studies of
Frank et al. [13] there seem to exist VH mutants that are
stable even without the F18, a phenylalanine at sequence po-
sition 18. There might be at least two explanations for this.
Firstly Frank et al. used NMR and wet lab mutagenesis to
investigate the impact of point mutations to the VH. Re-
garding the complexity of these methods their experiments
were limited to single and double mutations. Given the fact
that it took at least four different mutations to re-stabilize
VH, Frank et al. could not observe a re-stabilized VH mu-
tant without F18. Secondly we investigated the arrange-
ment of the side chains in direct vicinity to the F18 or L18
respectively. Lysine has a relatively long side chain, only at
its top carrying its hydrophilic group. Often this side chain
is flexible and exposed to the solvent and in this way makes
a stabilizing contribution to entropy. In this special case this
flexible and coiled arrangement would severely disrupt the
surrounding hydrophobic core, resulting in destabilization
of the VH conformation while a totally stretched side chain
would result in a penalty due to entropic losses. Now, the
introduced mutations made it possible to arrange the lysine
side chain in a conformation where its hydrophilic group is
exposed to the solvent whereas the non-polar remainder of
the sidechain is surrounded by hydrophobic sidechains and
thus participates in the hydrophobic core.

Therefore it could be interesting to repeat the experiment
using a F18D mutation instead of a F18K mutation. Aspar-
tic acid and lysine both are hydrophilic residues and there-
fore should disrupt the hydrophobic core arranged around
the replaced phenylalanine but their side chains differ in
length. With a shorter side chain it is more difficult for the
aspartic acid to expose its hydrophilic group. Therefore it
needs drastic changes in sequence or conformation to expose
this hydrophilic group which might increase the probability
for the mutation of residue 18 back to a phenylalanine which
could be achieved with only two mutations.

6. CONCLUSION AND OUTLOOK
We have presented a method for the evolutionary opti-

mization of peptide sequences with respect to conforma-
tional stability. In this multi-objective approach three crite-

ria are considered simultaneously that are crucial for peptide
function: stability, accessibility of key residues, and, implic-
itly, the RMSD of key residues to a desired conformation.

Using this optimization in silico we have predicted vari-
ants of the Villin headpiece peptide that are more stable
than the wild type. In collaboration with structural biolo-
gist, NMR experiments and calorimetric measurements are
underway to test our predictions experimentally.

Should our method withstand this and other tests, there
is still room for improvements in many directions, such as
the implementation of a cheaper energy function, or the con-
sideration of sequence insertions and deletions.

We hope that in this way our method will become a useful
tool for the optimization of peptidic drugs such as T20.
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