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Performance Assessment in a Nutshell

Depicted: the outcomes of 3 algorithms for a

" biobjecive knapsack problem...
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Decide: which one provides
the best performance?
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In the Following...

...you learn:
= what aspects performance assessment includes;
= why there is no general best performing randomized search algorithm;

= on the basis of one example what type of hard statements can be
made about the performance of randomized search algorithms.
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What Is Performance?

performance = quality of the outcome / time resources invested

Issues:

= How to measure time?
= overall execution time (OS, programming languages flaws)
= number of objective function evaluations

= How to measure quality?
= single objective: objective function value

= multiple objectives: what is the quality of a Pareto set
approximation?

» How to take randomness and parameterization into account?
= influence of the initial population, parameters, etc.
= statistics: expected value, variance, etc.
= How to choose the benchmark problems?
= simple to implement, but representative for complex applications
* how many is enough?
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Performance Assessment: Approaches

’ Which technique is suited for which problem class? ‘

O Theoretically (by analysis): difficult

» Limit behavior (unlimited run-time resources):

does the algorithm converge to the optimum when run for an
infinite number of iterations?

= Running time analysis:

what is the expected number of objective function evaluations
in the worst / average / best case?

® Empirically (by simulation): standard
= using standard parameter settings

= multiple runs, e.g., 30, for each algorithm under consideration
= statistical testing procedure for comparing sets of outcomes
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The Assumption: Some Are Better Than Others...

» various variants of randomized search have been proposed
» are some more robust (more efficient) than others?

elfciency 4 [Goldberg (1989)]
vebust o.!g:\,'rl-b\m
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» assumption behind this figure: some algorithms are better than others
in average
» in the following, we will see that this assumption does not hold in
general
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The Bad News: In General This Is Not True...
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No Free Lunch Theorems for Optiization

David H. Wolpert and William G. Macready

Abstract—A framework is developed to explore the connection
between effective optimization algorithms and the problems they
are solving. A number of “no free lunch” (NFL) theorems are
presented which establish that for any algorithm, any elevated
performance over one class of problems is offset by perfor-
mance over another class. These theorems result in a geometric
interpretation of what it means for an algorithm to be well
suited to an optimization problem. Applications of the NFL
theorems to information-theoretic aspects of optimization and
benchmark measures of performance are also presented. Other
issues addressed include time-varying optimization problems and
a priori “head-to-head” minimax distinctions between optimiza-
tion algorithms, distinctions that result despite the NFL theorems’
enforcing of a type of uniformity over all algorithms.

Index Terms— Evolutionary algorithms, information theory,
optimization.
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information theory and Bayesian analysis contribute to an
understanding of these issues? How a priort generalizable are
the performance results of a certain algorithm on a certain
class of problems to its performance on other classes of
problems? How should we even measure such generalization?
How should we assess the performance of algorithms on
problems so that we may programmatically compare those
algorithms?

Broadly speaking, we take two approaches to these ques-
tions. First, we investigate what a prior7 restrictions there are
on the performance of one or more algorithms as one runs
over the set of all optimization problems. Our second approach
is to instead focus on a particular problem and consider the
effects of running over all algorithms. In the current paper

Bio-inspired Optimization and Design

No-Free-Lunch-Theorem: Idea
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The Set Of Problems

Question: What optimization problems do we consider?

= Only single-objective problems will be considered

» The decision space is finite
= Without loss of generality, X c &, Z= &

A maximization problem is assumed

= The set of considered problems for a given decision space X c & is
described by all functions f: X — X, each representing another

optimization problem (X, &, f, 2):

Fyo={f | f: XK}

Note: F, is closed under permutations, i.e., for any f € F, and
permutation z: ¥— & is also the function f (x) := f(z(x)) in Fy
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One Notion of Performance

Question: What is the performance of a randomized search algorithm in
a black-box scenario?
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One Notion of Performance (Cont’d)
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The No-Free-Lunch Scenario / Theorem
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lllustration of the Proof
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lllustration of the Proof (Cont’d)

E veawoligs / Tore

| *

| F""-"‘”"dﬁ— o (P !

| B R
i Ao

i

~P = WP |

Eckart Zitzler ETH Zurich _ Bio-inspired Optimization and Design




lllustration of the Proof (Cont’d)
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Proof of the NFL Theorem
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Proof of the NFL Theorem (Cont d)

\A\e,' 'w—)ﬂ ::lAleG -H/‘L\'l‘

i ot

A_ F’(iid E":F’*f !;4 il | 3 L Lt

lfg(v Mrer e Qg“GM'J‘{ATAA f"’r ww‘ = "owo* s.e_wpﬁk Srﬂcxz.xf u\nHa.
_.I.Lq 912:;_ 0%'%.;

cﬁvno{- el Ak "\.LblMﬁ-!—-)ow oNAr 5-:’1

< 1
rO-CQ,_ ? g Bl \
i}\'il. ! } CA.‘ X;an 1 W |
PAISEe S Pl EroNe | Lt soluHow \ASited
s v < = ! : todbew -
e\m.r’&:? ,Jec\lsf: Syl 4+ McchL,C Pﬁvwi&:lg;,w e
L0y = CTFCkﬂ '
e L“\D\Ollb

-f—av od[ Xig X ot | +Lu~—e}cbf* @ds.a ~(c\.r><

© Eckart Zitzler ETH Zurich Bio-inspired Optimization and Design

Proof of the NFL Theorem (Cont’d)
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Discussion of The NFL Theorem

Question: Is the NFL scenario actually realistic?

Some reasons for criticism:

» not all possible functions f F are equally likely, some are even not
computable: : Cowua N e
X

-4 -

R R
» the assumption that each solution will be visited once at maximum is
not realistic

= observation in practice: random search worse than, e.g., simulated
annealing

= Dblack-box assumption problematic: representation, neighborhood are
problem-specific
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Implications of The NFL Theorem

Does that mean the NFL theorem is useless?

No, it needs to be seen as a theoretical validation of the assumption
stated in [Goldberg 1989], and theory usually needs a high abstraction
level. It indicates that this assumption most likely does not hold for
most realistic scenarios. Furthermore, there has not been any further
work that proved the opposite.

Nevertheless, there may be classes of functions where some algorithms
are better than others, and theoretical studies have been published to
show this. To determine theoretically and practically which type of
algorithm is best suited to which type of problem is the subject of
ongoing research.
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Running Time Analysis of a Simple RSA

Problem: ONEMAX

fONE'MAX(X) = Z?:l xr; with x = ($1,$2,...,$n) € {0,1}"

Algorithm:

= Evolutionary algorithm with population size N=1
* (1+1) environmental selection strategy

bit flip mutation with p,, = 1/ (n+1)

no recombination

Question: What is - in the worst case - the expected number of iterations
that need to be performed in the evolutionary algorithm until the
optimal solution has been found?
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Proof (Continued)
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Running Time Analysis: A Biobjective Scenario

Problem:
maximize leading ones (f,), trailing zeros (f,)

|1|1|0|1|0|0|0| 2 trailing Os
~[o]oJo[o]o]o]0]
"0,.
T Q,
Variation: _ .. [AA[Iololo]
single point mutation Q.
oJ1]ofo]o]

C) a

[AAAAAT]
[1]1[1]1ToJo]o0] ’

one bit per individual

"/ y

[Laumanns et al. (2004)] leading 1s
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Two Simple Multiobjective EAs

insert
into population

|f if not dominated dommated .
flip ] remove

randomly dominated
chosen bit from population

individual
from population

Variant 1: SEMO

Each individual in the
population is selected
with the same probability

(uniform selection)

Variant 2: FEMO

Select individual with
minimum number of
mutation trials

(fair selection)
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The Good News

SEMO/FEMO behave like a single-objective EA until the Pareto set
has been reached...

trailing Os
Y2

Phase 2:

only Pareto-optimal
solutions stored

in the archive

Phase 1:

only one
solution stored
in the archive

leading 1s

SEMO/FEMO: Sketch of the Analysis |

Phase 1: until first Pareto-optimal solution has been found

trailing Os

leading 1s

i = number of ‘incorrect’ bits

i—i-1: probability of a successful mutation > 1/n
expected number of mutations = n

i=n — i=0: at maximum n-1 steps (i=1 not possible)
expected overall number of mutations = O(n?)
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SEMO: Sketch of the Analysis Il

Phase 2: from the first to all Pareto-optimal solutions

j = number of optimal solutions in the
population

j—j+1: probability of choosing an outer solution > 1/j, <2/
probability of a successful mutation >1/n, <2/n
expected number T, of trials (mutations) > nj/4, < nj

j=1 —j=n: at maximum n steps = n3/8 + n%/8 <X T,<n%2 + n%2
expected overall number of mutations = ®(n3)
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FEMO: Sketch of the Analysis Il

Phase 2: from the first to all Pareto-optimal solutions

max trials

useless trials

necessary trials

Pareto set o

Upper Bound:
‘necessary’ trials per solution < 2n log n with probability
of at least 1 — O(1/n)
‘necessary’ + ‘useless’ trials per solution < 2n log n with
probability of at least 1 — O(1/n)
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Upper Bound: » D. Goldberg (1989): Genetic Algorithms in Search, Optimization, and
overall number of mutation trials = O(n2 log n) with Machine Learning. Addison-Wesley.
probability 1 — O(1/n) = M. Laumanns, L. Thiele, E. Zitzler (2004): Running Time Analysis of

Multiobjective Evolutionary Algorithms on Pseudo-Boolean Functions.
IEEE Transactions on Evolutionary Computation, IEEE Press, Vol. 8,
Lower Bound: No. 2, pp. 170-182.
I ber of mutat trials = O(n? | ith = D. Wolpert, M. Macready (1997): No Free Lunch Theorems for
overa’ number of mutations tnais = (n*log n) wi Optimization. IEEE Transactions on Evolutionary Computation, IEEE
probability 1 —O(1/n) Press, Vol. 1, No. 1, pp. 67-82.

Expectation value:
expected number of mutation trials = O(n? log n)
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