
Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Bio-inspired Optimization and Design

Eckart Zitzler

Computer EngineeringComputer Engineering

and Networks Laboratoryand Networks Laboratory

3. Basic Design Issues

3.1 Representation

3.2 Fitness Assignment

3.3 Selection

3.4 Variation

3.5 Example Application: Clustering

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Basic Design Issues in a Nutshell

0100

0011 0111

0011

0000
0011

1011

representation fitness assignment mating selection

environmental selection variation operators

parameters

Note: The above scheme represents an evolutionary algorithm, but also applies to
other randomized search algorithms.

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

In the Following...

...you learn:

� what the basic design choices are when implementing a randomized

search algorithm;

� what general techniques are available for each of these design issues;

� how these techniques work and can be implemented;

� how these issues have been addressed in an example application.

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Bio-inspired Optimization and Design

Eckart Zitzler

Computer EngineeringComputer Engineering

and Networks Laboratoryand Networks Laboratory

3. Basic Design Issues

3.1 Representation

3.2 Fitness Assignment

3.3 Selection

3.4 Variation

3.5 Example Application: Clustering

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Search Space and Decision Space

� The search space Y defines the space on which the variation

operators (neighborhood function, mutation, recombination, etc.) are

applied.

� The decoder function m: Y → X defines the mapping from the search
space to the objective space.

� In the evolutionary computation field, the search space is also denoted

as genotypic search space and the decision space as phenotypic

search space.

fm
1 0 1 1 1 0

1 0 1 1 1 0

1 0 1 1 1 0

search space decoder decision space objectives objective space

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Why Distinguishing Search and Decision Space?

� Ideally, search space and decision space are identical, i.e., Y = X and

m(y) = y for all y ∈ Y.

Examples: fONEMAX , fNEEDLE

Y = X = {0,1}n

where each solution is represented by a bitvector and can be

implemented via an array of length n.

� For many applications, though, the solutions in X need to be

appropriately encoded in order to process them on a computer, e.g., if

X = ℜ. In other words, Y is the representation of X in the computer.

Examples: graph problems, scheduling, symbolic regression, etc.

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Types of Encoding

Vectors:

� usually of fixed length

� usually implemented by means of arrays or lists

� often represent n-tuples of binary, integer, or real values

Trees:

� size usually not fixed

� usually implemented by means of list-based data structures

� often represent symbolic expressions such as LISP programs

Other Types:

� matrices, general graphs, etc.

� often hybrid representations are used (e.g., binary vector + matrix)

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Example: Binary Vector Encoding

Given: graph

Goal: find minimum subset of nodes such that each edge is

connected to at least one node of this subset
(minimum vertex cover)

1

A

0

B

1

C

1

D

1

E

0

F …

…

nodes

selected?

A B C D E

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Example: Integer Vector Encoding

Given: graph, k colors

Goal: assign each node one of the k colors such that the

number of connected nodes with the same color is
minimized (graph coloring problem)

1

A

2

B

1

C

3

D

1

E

2

F …

…

nodes

colors

A B C D E

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Example: Real Vector Encoding

[Michalewicz, Fogel (2000)]

0.33

x1

0.53

x2

1.03

x3

3.25

x4

…

…

9.83

xnparameters

values

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Tree Representations

Trees...

� are connected, acyclic (undirected) graphs

here: rooted, ordered trees with directed edges

� are flexible in size

� are mainly used to represent

symbolic expressions or

programs (therefore the term
Genetic Programming)

Note:

� trees can be implemented in different ways (see data structures

lecture)

� lists are specific trees where each node except of the leaf has exactly

one successor (good to represent size-flexible vectors)

root

inner nodes

leaves

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Type of Tree Representations

Usual usage:

� inner nodes = operators (each operator takes a certain number of arguments,
the arguments are the children / immediate successors in the tree)

� leaves = arguments (constants, variables)

Both operators and arguments define the space of possible trees and need to be
specified in advance

Examples:

� Boolean expressions:
set of operators
set of arguments

� Continuous functions:
set of operators
set of arguments

� Programs:
set of operators
set of arguments

number of arguments (arity)

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Some Example Trees

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

What Defines the Search Space?

If using a tree representation, the following needs to be specified:

� the set of operators

� for each operator, the number of arguments and their order

� if data types are used, for each argument the data type

� the set of variables and constants

� if data types are used, for each variable/constant its type

� an interpretation function that, given for variable a specific value,

`executes‘ the tree (required for fitness evaluation)

All trees that fulfill the above specifications are members of the genotypic

search space

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Tree Example: Parking a Truck

steering
angle

dock

cab

trailer

position (x,y)

u

constant speed

Goal:
find function c with

u = c(x, y, d, t)

d

t

[Koza (1992)]

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Search Space for the Truck Problem

Operators:

Arguments: X position x

Y position y

DIFF cab angle d
TANG trailer angle t

Decision space: set of symbolic expression using the above

operators and arguments

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Example Solution: Tree Representation

MULT

PLUSMINUS

DIFF Y TANGX

encodes the function (symbolic expression): u = (x – d) * (y + t)

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

A Solution Found by an EA

truck simulation encoded tree

Fitness assignment will be discussed later...

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Properties of Representations

In general, one is interested in a complete, uniform, non-redundant,
feasible representation preserving locality. However, if not all of these

criteria are met does not necessarily imply that the performance of the

search algorithm is negatively affected.

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Illustration of Representation Properties

� complete

� uniform (c=2)

� redundant (r=1)

� feasible

� locality within Hamming distance 1

� not complete

� not uniform

� not redundant

� feasible

� no locality within Hamming distance 1:

d(00, 01) = 1 ≤ d(00, 11) = 2, but
d(m(00), m(01)) = 2 >
d(m(00), m(11)) = 1

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Improving Locality

Question: Why is locality important?

Answer: Effects in the search space and the decision space should

be highly correlated

Example: X = {0,1, ..., 2n – 1}, Y = {0, 1}3

one-bit flip can generate

both direct neighbors

(but may still make large jumps)

one-bit flip cannot generate

both direct neighbors

X binary numbers gray code

0 000 000

1 001 001

2 010 011

3 011 010

4 100 110

5 101 111

6 110 101

7 111 100

1

2

1

3

1

2

1

1

1

1

1

1

1

1

hamming distance

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

The Gray Code

� A Gray Code is a binary encoding that ensures that the Hamming
distance between two consecutive neighbors is always 1.

� This does not necessarily mean that locality is preserved.

� Recursive method for determining a Gray Code:

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Reducing Redundancy (Example: TSP)

1. Matrix representation:

� binary n × n matrix M with

� many matrices are infeasible (unless repair mechanism is used)

� the genotypic search space is large:

2. Integer vector representation:

� vector (p1, p2, ..., pn) ∈ {2, ..., n}n-1 with

� many vectors are infeasible (unless repair mechanism is used)

� the genotypic search space is large:

3. Bit vector representation:

� each permutation is assigned a unique number

� all vectors are feasible

� no redundancy:

� mapping function difficult to compute

� locality is not preserved

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Bio-inspired Optimization and Design

Eckart Zitzler

Computer EngineeringComputer Engineering

and Networks Laboratoryand Networks Laboratory

3. Basic Design Issues

3.1 Representation

3.2 Fitness Assignment

3.3 Selection

3.4 Variation

3.5 Example Application: Clustering

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Fitness Assignment: General Remarks

Fitness = scalar value representing quality of an individual (usually)

The simple case:

Fi = f(m(yi))

More difficult cases:

� “informal” objectives (simulations, experiments)

� multiple optima need to be approximated (diversity)

� local search methods are integrated (hybridization)

� multiple objectives have to be considered (Section 4.1)

� constraints are involved which have to be met (Section 4.2)

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

“Informal” Objective Functions

Simulations / experiments:

� The objective function is difficult to formalize, i.e., the available models

are not accurate enough.

� Examples: parking a truck, training a robot

→ How to design the simulation / experiment?

Competitive fitness evaluation:

� The fitness of an individual depends on (some of) the other individuals

currently stored in the memory

� Example: iterated prisoner dilemma

→ How to carry out the competition?

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Parking a Truck

steering
angle

dock

cab

trailer

position (x,y)

u

constant speed

Goal:
find function c with

u = c(x, y, d, t)

d

t

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Truck: Simulation

Given: start conditions x, y, t (implicitly: d = 0)

Algorithm: execute solution c for discrete time steps until

� time runs out

� the trailer crashes into the loading dock

(x=0)

� target state reached
(x < 0.1m, y < 0.42m, t < 0.12)

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Truck: Fitness Assignment

Given: eight start conditions (x1, y1, t1), …, (x8, y8, t8)

Algorithm: fitness F = 0

for each start condition do

run simulation and obtain final x, y, t

F = F + x2 + 2 y2 + 40/π t

end

Note: Fitness is to be minimized here!

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Learning Obstacle Avoiding Behavior

[Nordin, Banzhaf (1997)]

motor 1

speed M1

motor 2

speed M2

Goal:
find function c for the

motor speeds M1, M2:
(M1, M2) = c(S0, …, S7)

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Robot: Characteristics

Input: 8 proximity sensor measurements

S0, S1, …, S7 ∈ {0,1, …, 1023}
higher values = closer to an object

Output: 2 motor speed settings

M1, M2 ∈ {0,1, …, 15}
higher values = higher speed

Training environment:

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Robot: Fitness Assignment

Given: robot is standing at an arbitrary position within

the environment

Algorithm: retrieve sensor measurements S0, S1, …, S7

from the robot

determine the speeds for both motors by applying
the solution under evaluation:

(M1, M2) = c(S0, S1, …, S7)

run robot for 400ms with motorspeeds M1, M2

retrieve sensor measurements S0’, …, S7’

fitness F =

16 (M1 + M2 - | M1 – M2 |) - (S0’ + S1’ + … + S7’)

high

speed

going

straight

far away from

any obstacle / wall

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Robot: Learning Curve

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Competitive Fitness Assignment

Main idea: The fitness of an individual depends on other individuals...
(e.g., used in multiobjective and multimodal optimization)

Example: evolving game strategies

Strategy = function that maps one game situation into another one

(one legal move)

TicTacToe:

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Variants of Competitive Fitness Assignment

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

The Prisoner’s Dilemma

questioned separately

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Pay-Off Matrix

He Denies He Confesses

You Deny Both serve six
months

He goes free; you
serve ten years

You Confess He serves ten
years; you go
free

Both serve five
years

Iterated Prisoner’s Dilemma: sum of payoffs for n subsequent games

Strategy = function which takes the moves (of both players) of the

previous k games as input and outputs the next move for one player
Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Multiple Optima

Goal: find multiple optima

Problem: genetic drift (tendency to converge to single optima)

Idea: incorporate density information into fitness

objective space decision space

multiple objectives single objective

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

The Problem: Genetic Drift

Genetic drift denotes a phenomenon in Biology where random changes in
the allele frequency (allele = “different values a gene can take”) can
observed due to sampling errors in finite small populations.

Here: we assume that only selection takes place (mating selection =
binary tournament, environmental selection = offspring population
replaces old population)

Observation: the smaller the population size, the less iterations are
required until the entire population contains only copies of the same
solution (only As or only Bs)

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

The Effect of Genetic Drift

[Goldberg (1989)]

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

The Principle of Density Estimation

General idea:

� take information about how close individuals are to each other into

account

� compute the “density” Di around a given individual yi: the larger Di the
more crowded is the region around yi

� modify the fitness of an individual yi using Di

Remark: The density can be calculated either in the search space, in the

decision space, or in the objective space. In single objective

optimization, usually the search space is considered, while in

multiobjective optimization in general the objective space is of interest.

Z = ℜ

X = ℜ

high density
low density

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

A Possible Solution: Fitness Sharing

Idea:

� the density is, roughly speaking, antiproportionate to the sum of the

distances to the other individuals in the population

� decrease an individual’s fitness the more individuals are close to it

Approach:

� kernel function h defined on the basis of a distance metric d:

where α (usually set to 1) and σshare are user-defined

� modified fitness where Di is the density around individual xi:

and Fi = Fi‘ / Di where Fi‘ is the original fitness value

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Fitness Sharing: Possible h Functions

[Deb (2001)]

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

The Effect of Fitness Sharing

[Goldberg (1989)]

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

The Effect of Fitness Sharing (Cont’d)

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Types of Diversity Preservation Techniques

f
f

f

Kernel

density estimate

=

sum of f values

where f is a

function of the

distance

Nearest
neighbor

density estimate
=

volume of the
sphere defined by

the nearest

neighbor

Histogram

density estimate

=

number of

solutions in the

same box

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Density Estimation Approaches

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Hybridization: General Considerations

Idea: Combine a general global search strategy such as an evolutionary
algorithm with a problem-specific heuristic or deterministic local search

strategy

→ often the key to success...

Approaches:

� Baldwinian scheme: each time a solution y in the RSA is evaluated,

1. first the deterministic local search algorithm is applied with the initial

solution y; and then

2. the resulting solution y‘ is evaluated and the corresponding

objective function value is returned, i.e., f(y) = f(y‘)

� Lamarckian scheme: each time a new solution y is created in the RSA,

1. first the deterministic local search algorithm is applied with the initial

solution y; and then

2. y is replaced by the resulting solution y‘ (initial population, offspring)

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

The Concept of Hybridization

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

A Usual Problem: Using Time Resources Efficiently

How to generate maximum quality solution in given PLSA time budget?

solution

refined solution

GSA:
global
search

algorithm

PLSA:
parameterized
local search

algorithm

controlled by the parameter p

(e.g., the size of the neighborhood or
the maximum of iterations of the LSA):

low high
accuracy

run-time

min
p

max
p

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Simulated Heating: Underlying Idea

Start with low p and systematically increase p over time

Phase 1:

Focus on GSA

(exploration)

Phase 2:

Focus on PLSA

(exploitation)

Adaptation function is called simulated heating scheme
(by analogy to simulated annealing)

iterations
of GSA

time spent
by PLSA

p fixed

p variable

phase 1 phase 2

[Zitzler et al. (2000)]

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Simulated Heating: General Scheme

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Static Heating Schemes

Given: parameters p1, p2, ..., pn in increasing order

� Fixed number of RSA iterations tp per parameter pi:

� Fixed amount of time Tp per parameter pi:

Tmax = maximum time resources

C(pi) = time needed to run local search algorithm with parameter pi

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Dynamic Heating Schemes

Given: parameters p1, p2, ..., pn in increasing order

� Fixed number of RSA iterations:

� Fixed amount of time:

Use next parameter value, if the quality of the

best solution in M has not improved for tstag RSA iterations

Use next parameter value, if the quality of the

best solution in M has not improved for Tstag time units

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Application Study (Details Omitted)

Application benchmark: Construct schedule for digital signal processor
such that the overall buffer memory size is minimized

Sample-rate conversion from a CD player to a DAT player

Setting:

� Five parameter values: p1, p2, p3, p4, p5

� Time budget: Tmax = 5h (Sun Ultra 60)

� Stagnation parameters: tstag = 10 and Tstag = 900s

� Population size: N = 100

compact disc player (44.1kHz) digital audio tape (48kHz)

connected to

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Results I: Quality of The Best Solution Found

p = 1, 153, 305, 457, 612 (fixed number of iterations) 0.3558
p = 1, 31, 62, 92, 123,153 (fixed number of iterations) 0.2848
p = 1, 153, 305, 457, 612 (fixed amount of time) 0.3024
p = 1, 31, 62, 92, 123,153 (fixed amount of time) 0.2609

static heating

p = 1 (minimum) 0.3394
p = 153 0.3308
p = 305 0.3637
p = 457 0.3622
p = 612 (maximum) 0.3692

keeping p constant

p = 1, 153, 305, 457, 612 (fixed number of iterations) 0.2992
p = 1, 31, 62, 92, 123,153 (fixed number of iterations) 0.2739
p = 1, 153, 305, 457, 612 (fixed amount of time) 0.2985
p = 1, 31, 62, 92, 123,153 (fixed amount of time) 0.2558

dynamic heating

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Results II: Number of Iterations Spent Per Parameter

fixed number of iterations 4
fixed amount of time 2

static heating (p = 1,…,612)

4
4 2

44
176 14

4

fixed number of iterations 0
fixed amount of time 4

dynamic heating (p = 1,…,612)

12
4 1

099
276 11

33

p = 1 (minimum)
p = 153
p = 305
p = 457
p = 612 (maximum)

keeping p constant

0
0

0
0 0

0900
0 73

0

0
0

22
0 12

00
0 0

0

100 00 0

1 612305 457153

Iterations per p value

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Bio-inspired Optimization and Design

Eckart Zitzler

Computer EngineeringComputer Engineering

and Networks Laboratoryand Networks Laboratory

3. Basic Design Issues

3.1 Representation

3.2 Fitness Assignment

3.3 Selection

3.4 Variation

3.5 Example Application: Clustering

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Selection: General Remarks

� Selection is the major determinant for specifying the trade-off between
exploitation and exploration.

� Two types of selection schemes can be distinguished:

� stochastic selection consisting of

� sampling rate assignment
Qi = probability that individual i is chosen

� sampling

choose N individuals according to their sampling rates

� deterministic selection

� Mating selection (selection for variation) is usually implemented using

a stochastic scheme, while environmental selection (selection for

survival) is often based on a deterministic scheme (exception:

Metropolis, Simulated Annealing)

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Sampling Rate Assignment

� fitness proportionate: (scaling dependent, e.g., adding a
constant factor changes the sampling rates)
Qi = Fi / ∑ Fk

Example:

� rank-based: (scaling independent)

sort population; Ri = rank of individual within resulting order

� linear: Pi = Ri + α

� quadratic: Pi = Ri
2 + α

� geometric: Pi = α (1 - α)
-Ri

� exponential: Pi = 1 - e
-Ri

Qi = Pi / ∑ Pk

� threshold:

Qi = 1/T if individual i is among the T best individuals

0 else

F1 = 1, F2 = 2, F3 = 3 ⇒ Q1 =
1

6
, Q2 =

1

3
, Q3 =

1

2

F1 = 1001, F2 = 1002, F3 = 1003 ⇒ Q1 =
1001

3006
, Q2 =

1002

3006
, Q3 =

1003

3006

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Sampling Methods: Principle

Roulette wheel

spin 4 times

Stochastic universal
sampling (SUS)

spin once

Q1

Q2

Q4

Q3

Q1

Q2

Q4

Q3

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Sampling Methods: Details

may lead to

high variance

in the selection

outcome

lower variance:

the number of

times a specific

individual is

selected varies

only by one

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Tournament Selection

= integrated sampling rate assignment and sampling

T = tournament size (binary tournament selection means T=2)

population mating pool

�

uniformly choose

T individuals at

random independently
of fitness

�

compare fitness

and copy best

individual
in mating pool

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Deterministic Selection Schemes

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Properties of Selection Schemes

� Takeover time = expected number of generations required until the
population contains only copies of the best
individual at the beginning (no variation takes place)

� Selection intensity =

I = (Fsel – F) / σ

where
Fsel = average fitness in population after selection

F = average fitness in population before selection
σ = standard deviation of fitness in population before selection

Many other properties have been suggested and used in theoretical
investigations. However, the effect of certain properties on the
performance of the search algorithm is difficult to capture...

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Bio-inspired Optimization and Design

Eckart Zitzler

Computer EngineeringComputer Engineering

and Networks Laboratoryand Networks Laboratory

3. Basic Design Issues

3.1 Representation

3.2 Fitness Assignment

3.3 Selection

3.4 Variation

3.5 Example Application: Clustering

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Variation: General Remarks

� Variation aims at generating promising new solutions resp. individuals
on the basis of those individuals selected for mating.

� Usually, two types of variation operators:

mutation: mut: Y → Y

recombination: recomb: Yr → Ys where r ≥ 2 and s ≥ 1

� The choice of the operators always depends on the problem and the

chosen representation; however, there are some operators that are
applicable to a wide range of problems and tailored to standard

representations such as vectors, trees, etc.

� Popular standard operators will be discussed in the following.

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Mutation: Guidelines

Question: What properties should a mutation operator have?

� The mutation operator can be seen as the counterpart to the

neighborhood function in local search; however, there usually two
differences:

1. Every solution can be generated from every other solutions by
means of mutation with a probability greater than 0.

2. d(x, x’) < d(x, x’’) ⇒ Prob[mut(x) = x’] > Prob[mut(x) = x’’]

� The above two criteria represent recommendations that not always

can be fulfilled in practice.

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Mutation: Binary Search Space

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Mutation: Discrete Search Spaces In General

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Mutation Operators for Permutations

Swap:

Scramble:

Invert:

Insert:

1 4 3 2 5 6

swap

1 2 3 4 5 6

1 3 4 2 5 6

rearrange

1 2 3 4 5 6

1 4 3 2 5 6

reverse

1 2 3 4 5 6

1 4 2 3 5 6

move

1 2 3 4 5 6

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Mutation: Real Vectors

� In principle, real vectors also have a discrete representation on the
computers and therefore could be treated as integer vectors. However,

replacing a real value by an arbitrary one is usually not effective.

� An alternative (many other mutation operators for real vectors exist):

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Mutation Operators on Trees: Grow

MULT

PLUSMINUS

DIFF Y TANGMINUS

YX

MULT

PLUSMINUS

DIFF Y MULTMINUS

YX XX

grow

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Mutation Operators on Trees: Shrink

MULT

PLUSMINUS

DIFF Y TANGMINUS

YX

MULT

PLUSMINUS

DIFF Y TANGTANG

shrink

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Mutation Operators on Trees: Switch

MULT

PLUSMINUS

DIFF Y TANGMINUS

YX

MULT

PLUSTANG

DIFF

Y MINUS

MINUS

YX

switch

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Mutation Operators on Trees: Cycle

MULT

PLUSMINUS

DIFF Y TANGMINUS

YX

MULT

MULTMINUS

DIFF Y TANGMINUS

YX

replace

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Recombination: Guidelines

Question: What properties should a recombination operator have?

� The recombination operator distinguishes evolutionary algorithms from

other randomized search algorithms; similarly to mutation operators, a
desirable property of a recombination operator is:

x’’ = recomb(x, x’) ⇒ d(x, x’’) ≤ d(x, x’) ∧ d(x’, x’’) ≤ d(x, x’)

� As before, this criterion represents a recommendation that not always
can be fulfilled in practice.

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Vector Recombination

One-point crossover:

N-point crossover:

Uniform crossover:

1 0 1 0 0 1

1 1 0 0 1 0
1 1 0 0 0 1

1 0 1 0 0 1

1 1 0 0 1 0
1 0 1 0 1 0 N = 2

1 0 1 0 0 1

1 1 0 0 1 0
1 0 0 0 0 0

For each position it is

determined separately (at

random) whether the value

is copied from parent 1 or

parent 2

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Recombination: Real Vectors

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Recombination of Trees

MULT

PLUSMINUS

DIFF Y TANGMINUS

YX

PLUS

MINUSTANG

DIFF

PLUS DIFF

MULT

TANGY
exchange

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Bio-inspired Optimization and Design

Eckart Zitzler

Computer EngineeringComputer Engineering

and Networks Laboratoryand Networks Laboratory

3. Basic Design Issues

3.1 Representation

3.2 Fitness Assignment

3.3 Selection

3.4 Variation

3.5 Example Application: Clustering (not part of the exam)

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Biclustering: The Problem in A Nutshell

Given:

data matrix Em × n with eij ∈ ℜ

Goal:

find submatrix in E that minimizes a given score fd, formally:

(X, ℜ, fd, ≤) where X = 2{1, ...,m} × 2{1, ...,n} (2A denotes the power set of

A); each submatrix x ∈ X is a pair (R, C) of rows R and columns C

Example: (values encoded as colors)

rearranging

rows and colums

homogeneous

submatrix

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

A Hybrid Evolutionary Algorithm for Biclustering

Outline:

� Based on a previously proposed greedy strategy for biclustering

� Uses an evolutionary algorithm for exploring the space of submatrices

� The greedy heuristic is integrated as local search method

The full paper can be found

at the end of this chapter.

© Eckart Zitzler ETH Zurich Bio-inspired Optimization and Design

References

� S. Bleuler, A. Prelic, E. Zitzler (2004): An EA Framework for Biclustering of
Gene Expression Data. Congress on Evolutionary Computation (CEC 2004),
Portland, pp. 166-173, IEEE Press, Pisataway, NJ.

� D. Goldberg (1989): Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, Reading, MA.

� J. Koza (1992): Genetic Programming. The MIT Press, Cambridge, MA.
(Chapter 11)

� Z. Michalewicz, D. Fogel (2000): How to Solve It: Modern Heuristics.
Springer, Berlin.

� P. Nordin, W. Banzhaf (1997): Real time control of a khepera robot using
genetic programming. Cybernetics and Control 26(3), pp. 533-561.

� E. Zitzler, J. Teich, and S. S. Bhattacharyya. Optimizing the Efficiency of
Parameterized Local Search within Global Search: A Preliminary Study.
Congress on Evolutionary Computation (CEC-2000), July 2000, pp. 365-372.
IEEE Press.

