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Randomized Search Algorithms in a Nutshell

t = 1:

(randomly) choose a
solution x1 to start with

Randomized

search algorithm

f

t →→→→ t + 1:

(randomly) choose a solution 
xt+1 using solutions x1, …, xt

Idea: find good solutions without investigating all solutions

Assumption: better solutions can be found in the neighborhood
of good solutions (the problem is structured)

black box
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In the Following...

...you learn:

� what is understood under the term randomized search algorithm;

� how popular randomized search heuristics work;

� that specific biologically inspired optimization methods, namely

evolutionary algorithms, represent a general framework for 

randomized search heuristics.
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Black Box Scenarios
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Black Box Optimization

� In a black box scenario, the mapping function f: X → Z is treated as a 
black box like an executable procedure in a computer program for

which the code is not known or not visible.

⇒ unclear whether optimal solution has been found, unless the entire 
decision space has been sampled

� Black box scenarios arise whenever the objective functions

1. are not given in closed from, i.e., if the objective function values 

are determined  via complex computations, simulations, or 

experiments; or

2. are highly complex and/or poorly understood.

� In real-world applications, often partial black box scenarios emerge 

where to some extent knowledge about the underlying problem is 

available.
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Example: Training a Robot to Avoid Obstacles

Goal: find a symbolic expression for a function c that determines the 
speed of the two motors depending on the proximity sensor inputs

such that the robot does not hit any obstacles

(M1, M2) = c(S0, S1, ..., S7) where c: {0,1, …, 1023}8 → {0,1, …, 15}2

[Nordin, Banzhaf (1997)]

motor 1

speed M1

motor 2
speed M2

proximity sensor
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Example: Evaluation of A Controller Function

[Nordin, Banzhaf (1997)]

The controller function under consideration is loaded onto the robot 
and executed directly on the robot in a given environment for 400ms:

Details will be given in Section 3.2.
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What Are Randomized Search Algorithms?

Randomized search algorithm (RSA):

� In general, optimization method that explicitly makes use of random 

decisions.

� Here, stochastic optimization heuristic for black box scenarios.

Goal of randomized search:

Systematically sample the decision space such that

1. the number of considered solutions is minumum, and

2. the quality of the best solution found is maximum.

Why discuss RSA here?

Most biologically inspired computation techniques belong to the class 

of randomized search algorithms...

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Randomized Search: Principle

Strategy: defines the way how the search space is sampled

x2

x1

f

choose

solution

choose

solution

evaluate

solution

evaluate

solution

update

memory

update

memory
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A General Randomized Search Algorithm

� M can be regarded as a multiset, i.e., it may contain duplicates.

� Various other termination criteria, e.g., no improvement over the last 

tMAX iterations, can be used.
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Background: Multisets

� A multiset differs from a regular set in that an element can be contained several times 

in the multiset. For instance, {1, 1, 2, 3, 3} and {1, 2, 2, 2, 3, 3} represents two 

different multisets, while the corresponding set interpretation would yield {1, 2, 3} in 

both cases.

� Formally, a multiset A is defined via a corresponding member function mA: U →ℵ0

which gives for each potential element a of a universe U the number mA(a) of 

occurences in A.

� The regular set operations can be extended to multisets in the following way:
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Example: Random Search

Random search does not make use of previously visited solutions.

Maximization problem:

(X, ℜ, f, ≥)
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Problem Structure and Information Content

Assumptions underlying all randomized search heuristics:

� Partial sampling is sufficient to reveal the problem landscape;

� Better solutions can be found in the neighborhood of good solutions.

But: not all problem landscapes are well structured...

Here random search is the

best one can do.

( {0,1}n, ℵ, fNEEDLE, ≥ )

Z = ℵ

X = {0,1}n

0...00 1...11

1

2
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Highly Structured Problem Landscapes

f
x2

x1

x2

x1

f

unimodal multimodal
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A Partially Structured Problem Landscape

[Michalewicz, Fogel (2000), page 15]

x1

x2

fG2
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Exploration Versus Exploitation

In black box optimization, there are two conflicting principles:

Exploration =  sampling everywhere

(explore new, promising regions)

Exploitation =  sampling around promising

solutions found so far

(exploit available information

about problem)

Which principle is more important depends on the optimization problem:

Z = ℜ

X = ℜ

Z = ℜ

X = ℜ

single local optimum

exploitation

many local optima

exploration
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Exploitation Usually Helps...

x2

x1

f

x2

x1

f

random search evolutionary algorithm

initial state (four solutions per iteration)
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Exploitation Usually Helps...

x2

x1

f

x2

x1

f

random search evolutionary algorithm

final state
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Types of Randomized Search Algorithms

� Before discussing RSA inspired by biological models, some widely-
used, non-bioinspired RSA will be presented. Each of these methods 

represents a specific trade-off between exploitation and exploration. 

� Specific RSA variants usually differ in the following aspects:

� The number of solutions stored in the memory (|M| = 1 or |M| > 1).

� The strategy that defines which solutions are kept in the memory.

� The way how the information stored in M is used to generate new 
solutions.

� The method of how to represent the information gained during the

optimization process in the memory.
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Idea: Instead of looking at the entire decision space in each iteration, only 
consider solutions in the proximity of the best solution so far.

decision space problem landscape

Local Search: Principle

Z = ℜ

X = ℜ

neighborhood
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Local Search Algorithm

� There is always just one solution in the memory.

� A new solution is generated by locally perturbing the current one.

Maximization problem:

(X, ℜ, f, ≥)
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The Neighborhood Function

The neighborhood function N(x) ⊆ X defines for each solution x the set of 
its neighbors.

Example:

({0,1}n, {1, 2, ..., n}, fONEMAX, ≥)  where

The parameter d determines the size of the neighborhood, e.g. (n=3):

� N0( (0,0,1) ) = {(0,0,1)}

� N1( (0,0,1) ) = {(0,0,1), (1,0,1), (0,1,1), (0,0,0)}

� N2( (0,0,1) ) = {(0,0,1), (1,0,1), (0,1,1), (0,0,0), (0,0,1), (1,1,1), (1,0,0),

(0,1,0)}
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A Neighborhood Function for the TSP

Principle: perform d cuts on the current route and rearrange the resulting 

pieces ⇒ neighboring solution

As |Nd| grows fast with increasing d, usually values d ≤ 3 are used.

In detail:

⇒

d = 2

�

�

where i denotes the city
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Choosing A Solution: Determinism Vs. Randomization

Two variants of local search can be distinguished:

1. Deterministic local search: all solutions in the neighborhood N(x) are 

evaluated and the best one is chosen

� Always ends in a local optimum (↑exploitation)

� Large neighborhoods are computationally infeasible (↓exploration)

2. Randomized local search: K < |N(x)| solutions are chosen randomly 

from the neighborhood N(x) and evaluated; the best of the K solutions 

is chosen

� May not reach local optimum (↓exploitation)

� Large neighborhoods can be considered (↑exploration)
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Influence of the Size of the Neighborhood

N(x) too large

⇒ exhaustive / random search

N(x) too small

⇒ getting stuck in local optima

Example: fONEMAX

� With x1 = 00...0 and d = 1

overall n iterations are needed 

to find the optimal solution.

� Exhaustive search needs

|X| = 2n in the worst case.

� The number of visited solutions 

is less than (n / d) ⋅ d ⋅ nd = nd+1

⇒ d = 1 is optimal

Z = ℜ

X = ℜ

x

N(x)

too small

too large
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Question

What extensions can you envision to overcome the problem of getting 
stuck in local optima?
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Multistart Strategies

Problem: How to increase the chance that the global optimum is found?

Idea: Restart the algorithm several times, each time with a different

initial solution; keep best solution found so far.

� Success probability of one run: δ

� Success probability of T runs: 1 - (1 - δ)T

� For δ = 0.5 and 10 runs: success probability > 99.9%

� In practice, though, δ can be very small...
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Metropolis Algorithm: Principle

Idea: avoid getting stuck in local optima by occasionally accepting worse 
solutions; the probability is lower the higher the quality difference.

Original publication:

[Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (1953)]

Z = ℜ

X = ℜ

x

very low

probability

low

probability
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Metropolis Algorithm

� Allows temporary deterioration depending on difference in quality

� rand[0,1] : uniformly randomly chosen number in [0,1] ; T: temperature

Maximization problem:

(X, ℜ, f, ≥)

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Local Versus Global Optimization Methods

� The local search algorithm is by definition a local optimization method, i.e., a method 

that locally improves the initial solution. Depending on the choice of the neighborhood 

and the problem, for some or even most of the possible initial solutions the probability 

that a global optimum is found is 0. However, the probability that any local optimum is 

found is always greater than 0.

� With global optimization methods, the probability that a globally optimal solution is 

found is greater than 0 for all possible initial solutions. This does not mean that a 

global optimum is actually found, but at least there is a chance that this is the case.

The Metropolis algorithm is a global optimization method as there is a mechanism 

included that allows to escape local optima. Also the algorithms presented in the 

following (simulated annealing, tabu search, and evolutionary algorithms) are global 

optimization methods.

For all global optimization method, it is useful to keep the best solution found so far as 

there is always a chance that the next accepted solution is worse than the current one. 

In the following, we will always assume that this mechanism is included, although it will 

not be explicitly be listed in the algorithm descriptions.
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Influence of the Temperature

� T → 0: local search

� T → ∞: random search

Key issue: T should be chosen 

depending on the problem, but 

how to choose optimal T ?

� “Jumping over large gaps”:
T large

� “Staying on the plateau”:

T small

c
h

a
n

c
e

 o
f 
a

c
c
e

p
ta

n
c
e

quality difference: δ = -(f(x) – f(xt))

Z = ℜ

X = ℜ

T small T large
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Idea: decrease the temperature systematically such that

� at the beginning large gaps can be overcome and a promising 

plateau can be identified (exploration), and

� at the end deterioration is avoided and the (locally) optimal solution 
within the identified plateau can be approximated (exploitation).

Original publications:

� [Kirkpatrick, Gelatt, Vecchi (1983)]

� [V. Cerny (1985)]

Simulated Annealing Algorithm: Principle

Z = ℜ

X = ℜ

��

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Simulated Annealing Algorithm

Cooling schedule cool:

� decreases temperature
based on t and T

� can also be adaptive,
i.e., dependent on the
improvement over time
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Question

Question:
What is the reason for computing a probability and making a random 

decision whether to take a solution or not? Alternatively, one might 

consider an error threshold that is decreased.

Answer:
If Step 10 would be deterministic, one always would accept worse

solution within the range defined by the temperature. That means at a 

certain stage, solutions exceeding the threshold will never be accepted 
anymore, which in turn can cause the algorithm to get stuck. This can 

never happen with the stochastic version as there is always a chance 

greater than zero that a worse solution is accepted.
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Cooling Schedules

� Geometric:

cool(t, T) = α ⋅ T  with α < 1 

� Linear:

cool(t, T) = T - α with α > 0 
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Is Simulated Annealing Better Than Metropolis?

Key question: is the cooling schedule essential, does it actually help?

� The cooling schedule usually does not make performance worse, e.g., 
when considering the commonly used geometric schedule:

cool(t, T) = α ⋅ T  with α < 1 

� Many problems cannot be solved more efficiently by simulated 
annealing than by the Metropolis algorithm with the best setting for the 
temperature parameter T.

� Until recently, it was an open problem whether there exists a non-
artificial problem for which simulated annealing outperforms the
Metropolis algorithm with optimal temperature setting.

I. Wegener showed in 2004 that simulated annealing can do better on 
specific instances of the minimum spanning tree problem.  
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Idea: Unlike local search, Metropolis, and simulated annealing, keep not 
only the one solution but the last K visited solutions in the memory. 

These previously visited solutions mark regions in the decision space 

which are prohibited for a certain time, i.e., they are tabu. 

First extensive discussion:

[Glover, Laguna (1997)]

Tabu Search Algorithm: Principle

Z = ℵ

X = ℵ
0

neighborhood N(x)

current solution

next accepted solution

tabu set N-(x, L)
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Tabu Search Algorithm

� N-(x, L) denotes the set of solutions that are tabu w.r.t. x

� x is contained by definition in N-(x, L)
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The Tabu Set: Solution-Based Implementation

The tabu set N-(x, L) for a particular solution is determined by the tabu list.

� The simplest form to implement the tabu list is by means of a FIFO 

queue (FIFO = first in, first out) that contains the recent k solutions 
visited (discrete problems). In this case, the tabu set is defined as

N-(x, L) = {x} ∪ {x‘ ∈ X | x‘ is contained in L}

At each iteration, the tabu list is updated by removing the oldest 
element in the list by the solution entering the tabu list. Therefore, 

each solution stays k iterations in the tabu list.

� Example: fONEMAX with n = 3 and k = 2

t = 5: M = {(0,1,0)} L = [(0,0,0), (1,1,0)]

t = 6: M = {(0,1,1)} L = [(1,1,0), (0,1,0)]

t = 7: M = {(1,1,1)} L = [(0,1,0), (0,1,1)]
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The Tabu Set: Move-Based Implementation

� Another possibility to define the tabu set is by storing not entire 
solutions but moves in the tabu list.

� A move is an operation that transforms one solution x into another 
solution x‘. In the case of binary vectors for instance, a move is 

described by the number of bit positions that need to be flipped for the 

transformation:

x = (0,0,0,1,1), x‘ = (1,0,0,1,0) → bit positions changed = {1, 5}

� Formally, one can define a transformation function h which takes as 
arguments (i) the solution to be transformed and (ii) the description of 

the move. In the case X = {0,1}n the function h can be defined as:
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The Tabu Set: Move-Based Implementation (Cont‘d)

� Given h, the tabu list L is updated every time by adding the move F
that transforms the current solution x to the selected solution xt, i.e., x‘

= h(x, F) ; as before, the oldest move in L is removed.

� Accordingly, the tabu set can now be defined as follows:

N-(x, L) = {x} ∪ {x‘ ∈ X | ∃F ∈ L: x‘ = h(x, F)}

It contains all solutions that can be generated from x via non-tabu 

moves. Note: N-(x, L) is larger than in the solution-based approach.

� Example: fONEMAX with n = 3 and k = 2

t = 5: M = {(0,1,0)} L = [{2}, {1}]

t = 6: M = {(0,1,1)} L = [{1}, {3}] (1,1,1) is tabu!

t = 7: M = {(1,0,1)} L = [{3}, {2}]
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Evolutionary Algorithms: Principle

Idea: explore several regions of the decision space in parallel by 

maintaining a population of solutions ⇔ parallel multistart strategy 
where the separate runs interact and are coordinated

History:

around 1960 first technical applications of simulated evolution

around 1970 three independent main branches of evolutionary algorithms

since 1985 rapidly growing field (availability of computing resources)

Z = ℜ

X = ℜ

memory at iteration t
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Biological Motivation

Main assumption: evolution = search

Main principles:

� phenotypic selection

environmental (who survives?)

mating (who reproduces?)

� genetic variation

mutation

recombination

(inversion, deletion, etc.)
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Scheme of An Evolutionary Algorithm

0100

0011 = 1 solution

fitness

evaluation

0111 fitness = 19

mating selection

recombination

0011

0000

mutation

0011

1011

environmental

selection
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Evolutionary Algorithm (EA)

New: population of solutions, mating selection, recombination

Bio-inspired Optimization and Design© Eckart Zitzler ETH Zurich

Evolutionary Algorithms: Terminology

� Fitness: value that reflects the quality of an individual

� Mating selection: chooses high quality individuals to generate new 

ones

� Mutation operator: generates a new solution by modifying a given 
solution; similar to the neighborhood function

� Recombination: combines two or more solutions to generate a new 

solution

� Environmental selection: decides which of the old and the newly 

created solutions will be kept in the memory

� Population: M (multiset!), usually its size is fixed with N = |M|

� Individual: synonymous for a solution stored in M

� Parent: element of the mating pool M’

� Offspring: element of M’’

� Generation: one iteration of the algorithm; also: the t-th generation 

stands for the population after t iterations
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Example: Design of An Evolutionary Algorithm

[Michalewicz (1996)]

(X, ℜ, fSIMPLE, ≥) with

� X = {x ∈ ℜ | -1 ≤ x ≤ 2}

� fSIMPLE(x) = x ⋅ sin(10 π x) + 1

� optimal solution x* ≈ 1.85...
(easy to analyze)

Aim: step-by-step design of an EA for this problem

2.85

1.85

x

f
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Step 1: Representation

Question: how to encode real values (7-digit representation) on the basis 
of binary vectors?

� values to be represented: {-1.000000, -1.000001, ..., 2.000000}

⇒ overall 3 ⋅ 106 + 1 different values need to be represented

⇒ 22 Bits needed (221 < 3 ⋅ 106 + 1 ≤ 222 )

� search space on which the EA works: Y = {0,1}22

� mapping m from Y to X:

m

0000000000000000000000 - 1.000000

0000000000000000000001 - 0.999999

...

1111111111111111111111 2.000000
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Steps 2 + 3: Fitness Assignment and Mating Selection

� Fitness: Fi = fSIMPLE(m(xi))

� Mating selection: create a temporary population M‘ by repeatedly 

holding tournamens between two randomly chosen individuals
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Step 4: Variation

� Mutation: flip each bit with probability pm (mutation rate)

� Recombination: with probability pc (crossover rate) split both parents 

as the same position and create two children by joining the 

complementary halves from both parents; otherwise, return the parent 

individuals unmodified

� Variation part: 
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Steps 5 + 6: Environmental Selection and Parameters

� Environmental selection:
M = M‘‘

� Parameters:
N = 50

pc = 0.25

pm = 0.01

⇒ chance that a selected
individual is copied

unmodified to the next

generation:

(1 - pc) ⋅ (1 - pm) ≈ 60%

[Michalewicz (1996)]
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Roots Of Evolutionary Algorithms

Evolution Strategies

Ingo Rechenberg

Hans-Paul Schwefel

Genetic Algorithms

John Holland

Evolutionary Programming

Lawrence Fogel

Genetic Programming

John Koza (later)

Today: � evolutionary algorithm = umbrella term

� differences blurr

See [Fogel (1998)]
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Main Branches: Historical Differences

Genetic 

Algorithms

Genetic

Programming

Evolution

Strategies

Evolutionary

Programming

Biological focus genotype genotype phenotype phenotype

Representation bit vector trees real vector real vector

(automata)

Mating selection randomized

fitness-based

randomized

fitness-based

randomized

uniform

deterministic

fitness-based

Variation mutation

recombination

mutation

recombination

mutation

(recombination)

mutation

(recombination)

Environmental 

selection

replacement:

M’’ = M

replacement:

M’’ = M

deterministic:

µ best

randomized:

µ best

Population size |M| = |M’| = |M’’| |M| = |M’| = |M’’| |M| = µ

|M’| = |M’’| = λ

|M| = |M’| = |M’’|

Misc adaptive 

mutation rates
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Randomized Search Heuristics in the EA Framework

selection

environmental
selection

mating
selection

variationmemory

EA ≥ 1 both ≥ 1 N : M
evolutionary algorithm ≥ 1 randomized

TS 1                                   no mating selection 1 1 : M

tabu search ≥ 1 deterministic

SA 1                                   no mating selection 1 1 : M

simulated annealing ≥ 1 randomized

ACO 1 neither 1 1 : 1
ant colony optimization 1 randomized
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