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1. Optimization and Search
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Optimization and Search in a Nutshell

specification

=

defining the goal of

the decision maker

(possibly informal)

modeling

=

formalizing the goal

in terms of an

optimization problem

optimization

=

searching within an

ordered set of

alternative solutions

What is the best

solution for ...?
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In the Following...

...you learn:

� what is understood under the term optimization problem;

� what makes optimization problems difficult;

� what types of optimization methods can be distinguished;

� how in general complex optimization problems can be approached.
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Introductory Example: The Coffee Machine Problem

select buttons

(on or off)

process button

?

Which combination of select

buttons (switched on)

generates something closest

to latte macchiato?

Which combination of select

buttons (switched on)

generates something closest

to latte macchiato?
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Question

What strategy do you suggest to minimize the number of trials?
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A Model for the Coffee Machine Problem

x1 = (0,1,1,0,0,0)

x2 = (1,1,1,0,0,1)
f(x1, x2) ∈ ℵ0

f = number of
incorrect properties

such as
no coffee contained,

sugar contained,
foam on top, ...

optimization problem: ( ({0,1}6, {0,1}6), ℵ0, f, ≤ )
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Coffee Machine Problem: The Decision Space

x2(1,1,1,1,1,1)

x1

(0,0,0,0,0,0)

(1,1,1,1,1,1)

decision space: (x1, x2) ∈ {0,1}6� {0,1}6

decision space = set of potential solutions to the problem
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Coffee Machine Problem: The Objective Space

x2(1,1,1,1,1,1)

x1

(0,0,0,0,0,0)

(1,1,1,1,1,1)

f
decision space

objective space: f(x1, x2) ∈ ℵ0

Objective space = space where solutions are compared to each other

objective function
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The Coffee Machine Problem: Problem Landscape

x2(1,1,1,1,1,1)

x1

(0,0,0,0,0,0)

(1,1,1,1,1,1)

f
decision space

objective space

Problem landscape: (x1, x2, f(x1, x2)) ∈ {0,1}6� {0,1}6�ℵ0

Problem landscape = search space and objective space together
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The Coffee Machine Problem: Searching

x2(1,1,1,1,1,1)

x1

(0,0,0,0,0,0)

(1,1,1,1,1,1)

f

Optimization goal = identify an optimal solution

global optimum
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Intermediate Summary

� So far, we have seen how we to transform an informal specification 
(„how to minimize the number of trials to obtain Latte Macciato?“) into 

a mathematical model.

� Next, we will generalize this and formally define what an optimization 

problem is.

� The following discussion may appear a little bit dry, but it is important 

to be precise here. In practice, one often observes that 

implementations have to be completely redesigned because the 

modeling part was done too sloppy.
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What Is An Optimization Problem: Illustration
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Optimization Problem: Definition

A general optimization problem is given by a quadruple (X, Z, f, rel) where

� X denotes the decision space containing the elements among which 

the best is sought; elements of X are called decision vectors or simply 
solutions;

� Z denotes the objective space, the space within which the decision 

vectors are evaluated and compared to each other; elements of Z are 
denoted as objective vectors;

� f represents a function f: X → Z that assigns each decision vector a 
corresponding objective vector; f is usually neither injective nor 

surjective;

� rel is a binary relation over Z, i.e., rel ⊆ Z × Z , which represents a 
partial order over Z.
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Objective Functions

� Usually, f consists of one or several functions f1, ..., fn that assign each 

solution a real number. Such a function fi: X → ℜ is called an 
objective function, and examples are cost, size, execution time, etc.

� In the case of a single objective function (n=1), the problem is denoted 

as a single-objective optimization problem; a multiobjective 
optimization problem involves several (n ≥ 2) objective functions:

� In the following, we focus on single-objective optimization problems; 

multiobjective optimization problems will be dealt with in Chapter 4.2.

performance performance

cost

single objective multiple objectives

Bio-inspired  Optimization and Design© Eckart Zitzler ETH Zurich

Preference Structures

� The function f together with the partially ordered set (Z, rel) defines a 
preference structure on the decision space X that reflects which solutions the 
decision maker / user prefers to other solutions.

� The preference structure prefrel ⊆ X × X is a binary relation with

x1 prefrel x2 :⇔ f(x1) rel f(x2)

The pair (X, prefrel) is an preordered set, but not necessarily a partially 
ordered set because different solutions may be mapped to the same objective 
vector and antisymmetry is not fulfilled (indifferent solutions).

� One says:

� Two solutions x1, x2 are equal iff x1 = x2;

� A solution x1 is indifferent to a solution x2 iff x1 prefrel x2 and x2 prefrel x1 

and x1 ≠ x2;

� A solution x1 is preferred to a solution x2 iff x1 prefrel x2;

� A solution x1 is strictly preferred to a solution x2 iff x1 prefrel x2 and not (x2

prefrel x1);

� A solution x1 is incomparable to a solution x2 iff neither x1 prefrel x2 nor x2

prefrel x1.
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Background: Binary Relations

� A binary relation rel over a set S is a subset of S × S, i.e., rel contains ordered pairs of 

S. One usually writes a rel b instead of (a, b) ∈ rel.

� rel is called

1. reflexive iff a rel a for all a ∈ S;

2. irreflexive iff (not a rel a) for all a ∈ S;

3. symmetric iff a rel b implies b rel a for all a, b ∈ S;

4. asymmetric iff a rel b implies (not b rel a) for all a, b ∈ S;

5. antisymmetric iff (a rel b and b rel a) implies a = b for all a, b ∈ S;

6. transitive iff (a rel b and b rel c) implies a rel c for all a, b, c ∈ S; 

7. connected iff a rel b or b rel a for all a, b ∈ S with a ≠ b;

8. strongly connected iff a rel b or b rel a for all a, b ∈ S.

� A binary relation rel over a set S is an equivalence relation iff it is reflexive, symmetric, 

and transitive. An equivalence relation rel partitions the set S into disjoint subsets S1, 

..., Sn, the so-called equivalence classes, where for all a,b ∈ Si holds
a rel b.
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Background: Orders and Ordered Sets

� A binary relation rel over a set S is denoted as

1. preorder iff rel is reflexive and transitive;

2. partial order iff rel is a preorder and rel is antisymmetric;

3. total preorder iff rel is a preorder and rel is connected;

4. total order iff rel is a total preorder and rel is antisymmetric.

� The pair (S, rel) is called

1. preordered set iff rel ⊆ S × S and rel is a preorder;

2. totally preordered set iff rel ⊆ S × S and rel is a total preorder;

3. partially ordered set iff rel ⊆ S × S and rel is a partial order;

4. totally ordered set iff rel ⊆ S × S and rel is a total order.

� Given a partially ordered set (S, rel), the element a of a subset T of S is called a 

minimal element of T iff b rel a implies b = a for all b ∈ T.

For a totally ordered set, the minimal element is unique, while for a partially ordered 

set there may exists several minimal elements.
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Example: ({x1, x2, x3, x4}, ℵ0, f, ≤ ) with f(x1) = f(x2) = 4, f(x3) = f(x4) = 6

x1 and x2 as well as x3 and x4 are indifferent to each other.

objective space

(used elements f(X) )

({4, 6}, ≤)

totally ordered set

decision space

({x1, x2, x3, x4}, prefrel)

totally preordered set

The Relation Between Decision and Objective Space

4

6

x1 x2

x3 x4

stands for ≤
stands for

prefrel
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Background: Graphs and Visualization of Preordered Sets

� A (directed) graph G is a tuple G = (V, E) where

� V stands for a set of vertices or nodes, and

� E ⊆ V × V contains the edges that represent connections between pairs of 
vertices.

Graphs are used as abstract representations for various things such as computer 

networks, metabolic pathways, etc. Vertices are usually drawn as circles and edges as 

arrows; for instance, the graph G = ({1,2,3}, {(1,2), (2,3), (1,3)}) can be depicted as

� Graphs can be naturally used to represent a preordered set (S, rel) where the 

elements of S are the nodes (V = S) and the edges stand for the pairs included in rel

(E = rel).  Often, a more compact representation is achieved by considering the cover 

relation covrel := {(a, b) ∈ rel | (b, a) ∉ rel ∧ ∀c ∈ S : (a, c), (c, b) ∈ rel ⇒ (c, a) ∈ rel ∨
(b, c) ∈ rel}. Example: graphs for ({1, 2, 3}, ≤), left, and ({1, 2, 3}, cov≤ ), right: 

1 2 3

1 2 3

1 2 3
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Example: ({x1, x2, x3, x4}, ℵ0, f, ≤ ) with f(x1) = f(x2) = 4, f(x3) = f(x4) = 6

equivalence classes

(w.r.t. indifference)

({[x1], [x3]}, prefrel)

totally ordered set

objective space

(used elements f(X) )

({4, 6}, ≤)

totally ordered set

decision space

({x1, x2, x3, x4}, prefrel)

totally preordered set

The Relation Between Decision and Objective Space

4

6

x1 x2

x3 x4

[x1]

[x3]

f

f

one-to-one

(injective)

many-to-one

(not injective)
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The Notion of Optimality

� A solution x ∈ X is called optimal with respect to a set S ⊆ X iff no 
solution x’ ∈ S is strictly preferred to x, i.e., for all x’ ∈ S: x’ prefrel x ⇒
x prefrel x’.

� In other words, f(x) is a minimal element of f(S) regarding the partially 

ordered set (Z, rel).

4

6

x1 x2

x3 x4

f

f

optimal solutions w.r.t. X minimal element

Bio-inspired  Optimization and Design© Eckart Zitzler ETH Zurich

Global and Local Optima

One can distinguish two types of optimal solutions: 

1. A global optimum is a solution x ∈ X that is optimal w.r.t. X.

2. A local optimum is a solution x ∈ X that is optimal within a certain 
neighboorhood of x given a distance metric d on X:

x ∈ X is locally optimal :⇔
∃ ε > 0 with S := {x’ ∈ X | d(x,x’) ≤ ε} such that
(i) the neighborhood S \ {x} is not empty

(ii) x is optimal w.r.t. the neighborhood S

Example:

(ℜ, ℜ, f, ≥)
Z = ℜ

X = ℜ

global optimum

local optima
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Unimodality and Multimodality

Unimodal optimization problem:
All locally optimal solutions are 
indifferent to each other (they are 
at the same time globally optimal) 

Multimodal optimization problem:
There exist at least two locally 
optimal solutions that are not
indifferent to each other

Z = ℜ

X = ℜ

Z = ℜ

X = ℜ

Sometimes problem landscapes are characterized according to whether there is 
only a single peak or several peaks exists; most real-world optimization 
problem, though, are multimodal.
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The Goal of Optimization

� Note that there may exist several global optima; we here assume that 

any global optimum is sufficient to solve the problem. If one is

interested in finding all global optima, a different optimization problem 
emerges where the decision space consists of sets of solutions.

� With many practical applications, it is infeasible to generate a globally 

optimal solution; instead, one is often interested in finding an

approximate solution that is as ‘close’ as possible to any global 
optimum. 

Given a optimization problem (X, Z, f, rel),

the goal is to identify

a solution x ∈ X that is globally optimal.

Given a optimization problem (X, Z, f, rel),

the goal is to identify

a solution x ∈ X that is globally optimal.
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Example: The Traveling Salesman Problem (TSP)

Given:
A number of cities and the

traveling distances from any

city to any other city

Question:
What is the shortest round-trip

route that visits each city once

and then returns to the starting
city?

Note: many TSP variants exist
http://www.tsp.gatech.edu/
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The Traveling Salesman Problem Formalized

Given: number n of cities, and traveling distances d(i, j) from city i to city j

Optimization problem: (X, ℵ, f, ≤) with

The influence of n on the size of the search space:

� In general: |X| = (n -1)! ∈ O(nn)

� For a symmetric TSP where d(i, j) = d(j, i), the number of different 

roundtrips is (n -1)! /2 as the direction does not matter

� The decision space grows rapidly with increasing n:

n = 10:  |X| = 362880

n = 20:  |X| = 2.4329 · 1018

n = 50:  |X| = 3.0414 · 1064

(For comparison: the earth contains about 1021 liters of water)

Bio-inspired  Optimization and Design© Eckart Zitzler ETH Zurich

What Makes Optimization Problems Difficult

The main factors (many more could be listed):

1. The size of the decision space is huge and prevents (advanced) 
enumeration techniques from being applicable,

and

2. either

� the objective functions are known, but highly complex and/or 
poorly understood (NP hardness, non-linearities, non-
differentiability, etc.)

or

� The objective functions are not given in closed form, but are 
determined numerically, by simulation, or even by experiment.
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Background: Running Time and Order of Growth 

� The running time of an algorithm on a given input is basically the number of 

elementary steps (arithmetic operations, branches, etc.) executed. In general, with 

each algorithm A there is a function rA: ℵ → ℵ associated which gives the minimum 
(best-case running time), average (average-case running time), or the maximum 

(worst-case running time) number of elementary steps needed to process any input of 

size n.

� Often one is not interested in the exact formula for rA, but rather in the asymptotic 

behavior or order of growth; here, one looks for the dominating terms in the formula for 

rA that determine the growth of rA, if n goes to infinity. For this reason, the

O-notation has been introduced where O(g(n)) defines a set of functions:

Roughly speaking, O(g(n)) denotes the set of all functions that asymptotically grow not 

faster than g(n), g: ℵ → ℵ.

� One says the (worst-case) running time complexity of an algorithm A is of order 

O(g(n)), if rA ∈ O(g(n)). For instance, an algorithm is said to have a linear or quadratic 

running time complexity, iff rA ∈ O(n) resp. rA ∈ O(n2).
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Background: NP Hardness

� In general, an optimization problem is considered to be efficiently solvable, if there 

exists an algorithm A the running time complexity of which is of order O(nk), where k is 

a specific constant; in other words, the running time of A is bound by a polynomial. 

Although for large k, e.g., k=20, such an algorithm can become unusable in practice.

The situation is even worse for algorithms that require in the worst case exponentially 

many steps w.r.t. the input length n, e.g., O(2n). In this case, already for small n, the 

algorithm may not stop in reasonable time.

� The term NP hard characterizes a class of search problems for which no polyonmial 

algorithm is known. Although it is an open research problem to prove the non-

existence of polynomial algorithms for these problems, most experts worldwide are 

convinced that this is actually case. That means whenever an optimization problem 

has been shown to be NP hard, then we cannot expect that in general an optimal 

solution can be determined within polynomial running time. For instance, the TSP is 

NP hard.
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Types of Optimization Methods

� Exact algorithms:
guarantee to find an optimal solution

� Approximation schemes:
guarantee to find a solution that is not worse than an 

optimal solution by an arbitrary factor of ρ that can be set 
by the user; the running time is usually exponential in ρ

� ρρρρ - approximation algorithms:
guarantee to find a solution that is not worse than an 

optimal solution by a constant factor of ρ that cannot be 
changed by the user

� Heuristic algorithms:
do not give any guarantees about the quality of the 
generated solution, but “usually” generate reasonably 
good solutions reasonably fast effort

quality
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A Heuristic Method for the TSP

Principle: always travel in
direction of the closest

city not visited yet... d(i, j) 1 2 3 4

1 - 2 4 5

2 2 - 3 7

3 4 3 - 23

4 5 7 23 -

Example:

Heuristic algorithm:

route = 1-2-3-4-1

fTSP = 2 + 3 + 23 + 5 = 33

Exact algorithm:

route = 1-3-2-4-1

fTSP = 4 + 3 + 7 + 5 = 19
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Problem Solving Approaches

� The classical way of approaching an optimization problem is algorithm 
orientied: The problem is analyzed and then a problem-specific 

algorithm is designed. 

� It may be necessary to simplify the problem (model).

� Requires both expertise and time.

� With the advent of sufficient computing resources, an alternative, 
model-oriented approach emerged: the model is refined until the 

relevant aspects of reality are appropriately taken into consideration 

and then a general search algorithm is applied. 

� The algorithm may perform poorly.

� No guarantees about the quality of the generated solutions.

Often, it is helpful to use both approaches simultaneously.
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The Algorithm-Oriented Approach

ProblemProblem

ModelModel

Simplified

Model

Simplified

Model

AlgorithmAlgorithm

ApplicationApplication

Focus: a good algorithm…

� Design of a problem-specific algorithm

using known concepts:

� Dynamic programming

� Branch and bound

� Divide and conquer

� Usage of a general search algorithm

with model constraints:

� Integer linear programming

� Gradient methods
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The Model-Oriented Approach

ProblemProblem

ApplicationApplication

AlgorithmAlgorithm

ModelModel

Focus: a good model…

Usage of black-box optimization methods

to approximate the optima:

� Evolutionary algorithms

� Randomized search algorithmsImproved

Algorithm

Improved

Algorithm

f
Performance: 1000

Cheapness: 50

?
nonlinear function

simulation
experiment
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