Eidgenéssische Technische Hochschule Ziirich Computer Engineering
Swiss Federal Institute of Technology Zurich and Networks Laboratory

Bio-inspired Computation and Optimization

Project 1: Knapsack Problem — Part |

© Eckart Zitzler ETH Zurich Bio-inspired Computation and Optimization

= Johannes Bader

= OfficeETZG 81

= Phd student since November 2006
= baderj@tik.ee.ethz.ch

http://www.tik.ee.ethz.ch/sop/education/lectures/BOD/

© Eckart Zitzler ETH Zurich

Bio-inspired Computation and Optimization

= (Class Time: 15.15-16.00
= Four Projects:
1. supervised by me (Johannes)
2. supervised by Tamara Ulrich
3. supervised by Mattia Gazzola
4. supervised by Mattia Gazzola
= Discussion of the exercises
= Time to ask questions also concerning the lecture!
* during the exercises
« after the exercise
* bye-malil
* arrange an appointment

© Eckart Zitzler ETH Zurich Bio-inspired Computation and Optimization

General Guidelines

= The projects can be worked on in groups of maximal three students.

= |norder to fulfill the “Testat” conditions, at least 40 points need to be
reached for each project and 200 points in total for all 4 projects. Tasks
which can easily be skipped are marked as supplementary tasks.

= The solutions have to be submitted by
Task 1: March 5t at 24:00
Task 2: March 12t at 24:00

= The solutions (program code, plots, text, ...) have to be submitted via email.
As attachments only PDF, Word or text documents are accepted. Only
submit one single document.

= The solutions will be graded and returned in the following week’s exercise
lesson.

© Eckart Zitzler ETH Zurich Bio-inspired Computation and Optimization

Knapsack Problem

11 kg
159

Maximize Profit Without Exceeding
the Capacity

Profit: 20$

© Eckart Zitzler ETH Zurich Bio-inspired Computation and Optimization

Feasible, Infeasible and Optimal Solutions

© Eckart Zitzler

‘Hfé_asibr
solution
weight 0kg 3kg 5kg 8kg
profit 05 45 65 65

feasible / optimal infeasible
solution solution
weight 8kg 11kg 13 kg 16 kg
profit 108 10 8 128 16¢

ETH Zurich Bio-inspired Computation and Optimization

Task 1: Modelling and Implementation

Describe how you would represent a solution x for the knapsack problem
and define the search space X.

Give an expression for the objective function f. Solutions that exceed the
given capacity bound shall receive an objective function value of zero.

Describe an algorithm to calculate the objective function value of a given
solution x in pseudocode.

Choose a programming language. Write a program that is able to read all
problem parameters (number of items, profit and weight values, capacity)
from text files.

Generate 10000 random solutions and calculate the objective function value
of each of them.

Supplementary task: Extend your program such that it enumerates all
possible solutions and prints out the optimal ones. For each problem
instance from task d) report the optimal solution(s), their objective function
value and the running time..

© Eckart Zitzler ETH Zurich Bio-inspired Computation and Optimization

Task 2: Neighborhood Search

a) Define a parameterized neighborhood function N (x),x € X.d € N. for the knapsack problem.
The parameter d should reflect the size of the neighborhood. A neighborhood function should have
the property that for any @ € X.d < n : Ng(x) € Ng(x) & d < d'. Show that this property
holds for your function. (10 Points)

b) Implement the Randomized Local Search for the knapsack problem. Run the program on the
problem instance given on the lecture website for 100000 iterations and 5 different values. Plot
the current best function value versus the elapsed number of iterations for each of the five runs in

the same diagram and store the final best solution found =*. (15 Points)

© Eckart Zitzler ETH Zurich Bio-inspired Computation and Optimization

Example: Random Search

10:
11:
12:
13:
14:
15:
16:

Randomly choose an initial solution x; from X Maximization problem:
Calculate f(z1) (X, R, f, =)
Initialize memory, i.e., M = {(x1, f(z1)}
Set iteration counter t =0
loop
t=1t+1
Randomly choose x; € X
Calculate f(z;)
if f(x;) > f(x) where M = {(z, f(z)} then
Keep z; as best solution seen so far, i.e., M = {(xy, f(x¢)}
end if
if ¢t >ty ax then
Output solution x stored in M with M = {(z, f(z)}
Stop
end if
end loop

Random search does not make use of previously visited solutions.

© Eckart Zitzler ETH Zurich Bio-inspired Computation and Optimization

Task 2 cont.

c) Supplementary task: We want to measure how the distance from the best solution x* relates
to the difference in objective function value. Create 10000 random solutions from Ng(x™) for
a reasonable maximal distance . Plot the solutions in a diagram. where the x-axis denotes the
distance in objective space f(x™*) — f () and the y-axis the distance in the search space according
to the chosen neighborhood function. i.e. min{d : » € Ngy(x*)}. Describe the plot and discuss
what it reveals about the structure of the problem and the applicability of neighborhood search.
(15 Points)

© Eckart Zitzler ETH Zurich Bio-inspired Computation and Optimization

Task 2: Neighborhood Search

d) Supplementary task: Contrarily to the Randomized Local Search. the Metropolis algorithm ac-
cepts a worse solution with a certain fixed probability T. Implement the Metropolis algorithm for
the knapsack problem using the neighborhood fiunction from task 2a). Run the program on the
problem instance given on the lecture website for 5 different T values and 100000 iterations each.
Assume d = 1. Plot the current best objective value versus the elapsed munber of iterations for all
5 runs in the same diagram. Also plot the current objective value versus the number of iterations.
What T value do you recommend and why? (20 FPoints)

if f(z;) > f(x) V rand|0,1] < e~ HEZHE then

M = {(x¢, f(x¢))}

© Eckart Zitzler ETH Zurich Bio-inspired Computation and Optimization

