
Bio-inspired Computation and Optimization

Computer EngineeringComputer Engineering
and Networks Laboratoryand Networks Laboratory

Project 1: Knapsack Problem – Part I

Discussion of Task1

Bio-inspired Computation and Optimization 2-1© Eckart Zitzler ETH Zurich

Discussion of Task1

Task 1 a)

Bio-inspired Computation and Optimization 2-2Johannes Bader ETH Zurich

Task 1 a), Solution

Bio-inspired Computation and Optimization 2-3Johannes Bader ETH Zurich

� Give x

� Give meaning of elements of x

� Give X

Task 1 a) (alternative solution)

Bio-inspired Computation and Optimization 2-4Johannes Bader ETH Zurich

� Harder to implement (variable length vectors)

� not giving meaning of x:

� excluding infeasible solutions:

Task 1 a) common pitfalls

Bio-inspired Computation and Optimization 2-5Johannes Bader ETH Zurich

� only considering optimal solutions:

Task 1 a) common pitfalls, cont.

� only using words:

� talking about implementation:

Bio-inspired Computation and Optimization 2-6Johannes Bader ETH Zurich

� talking about implementation:

� Allowing copies of the same item:

Task 1 b)

Bio-inspired Computation and Optimization 2-7Johannes Bader ETH Zurich

Task 1 b), (alternative solutions)

Bio-inspired Computation and Optimization 2-8Johannes Bader ETH Zurich

Task 1 b), common pitfalls

� +- 1 errors on the index variable, i.e., ranging from 0 to n:

� < rather than <= when checking the constraint:

Bio-inspired Computation and Optimization 2-9Johannes Bader ETH Zurich

� < rather than <= when checking the constraint:

Task 1 b), common pitfalls, cont.

� forgetting x_i:

Bio-inspired Computation and Optimization 2-10Johannes Bader ETH Zurich

Task 1 c)

� Algorithm calculateObjectiveValue(x, p, w, n, cap)
Input: The set of chosen items x, the number of items n,

the vectors p (profit) and w (weight) of length n and

the capacity of the knapsack cap.

Output: The objective value

sum_profit = 0
sum_weight = 0

Bio-inspired Computation and Optimization 2-11Johannes Bader ETH Zurich

sum_weight = 0

for i = 1 to n do
sum_profit = sum_profit + x[i]*p[i]
sum_weight = sum_weight + x[i]*w[i]
if sum_weight > cap then

return 0
end if

end for

return sum_profit

Task 1 c), Avoid very brief notations

1

calculate ()
n

i i

i

f x p x
=

=∑
�

Bio-inspired Computation and Optimization 2-12Johannes Bader ETH Zurich

TOTAL_WEIGHT equals sum of weights of selected items of x

Task 1 c), common pitfalls

� Forgetting x_i:

� Calculating the fitness for all solutions:

Bio-inspired Computation and Optimization 2-13Johannes Bader ETH Zurich

� Confusing profit and weight:

Task 1 c), common pitfalls, cont.

� Wrong beginning or ending number of iteration:

� Randomly generating solutions:

Bio-inspired Computation and Optimization 2-14Johannes Bader ETH Zurich

Task 1 d)

Bio-inspired Computation and Optimization 2-15Johannes Bader ETH Zurich

Task 1 d) Part 1

Bio-inspired Computation and Optimization 2-16Johannes Bader ETH Zurich

Thanks to Raphael Suard, Michael Benz und Olle Sundström

Task 1 d) Part 2

Bio-inspired Computation and Optimization 2-17Johannes Bader ETH Zurich

Thanks to Raphael Suard, Michael Benz und Olle Sundström

Task 1 d) (short solution)

Bio-inspired Computation and Optimization 2-18Johannes Bader ETH Zurich

Task 1 e)

� Exhaustive search, check all 2^n solutions.

� To get the ith solution, you can use the binary representation of i, e.g,

the solution 13 would be 00001101 (8 Items). (Make sure you cover

the solution 00......0.

Bio-inspired Computation and Optimization 2-19Johannes Bader ETH Zurich

Task 1 e), runtimes

� Runtimes in seconds on the instance with 20 items

4
5
.4
4

4
6
.5
9

4
9
.4
3

5
4
.8
0

9
3
.8
9

9
9
.4
1

1
3
6
.7
6

2
9
2
.7
5

2
'1
9
0
.0
0

2
'5
7
1
.0
0

9
'0
0
0
.0
0

1
1
6
.3
0

1
1
.8
4

1
2
.3
1

4
4
.9
6 1
0
7
.3
4

26.45

1
2
4
.1
2
7

100

1000

10000

Matlab Java

Python Perl

C

Bio-inspired Computation and Optimization 2-20Johannes Bader ETH Zurich

1
.6
1 2
.6
3

3
.1
7 5
.8
6

7
.2
1

0
.1
6

7
.5
0

7
.3
9 1
1
.8
4

1
2
.3
1

0.01

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Task 1 e), Fast way to generate all combinations

for (int k=0; k<(1<<n); k++) {

for (int i=0; i<n; i++) {

x[i] = (k>>i) & 1;

}

double p = f(x, weight, profit, capacity);

Bio-inspired Computation and Optimization 2-21Johannes Bader ETH Zurich

double p = f(x, weight, profit, capacity);

if (p > bestProfit) {

bestProfit = p;

bestX = x.clone();

}

}

