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Discussion of Task1



Task 1 a)
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Task 1 a), Solution
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� Give x

� Give meaning of elements of x

� Give X



Task 1 a) (alternative solution)
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� Harder to implement (variable length vectors)



� not giving meaning of x:

� excluding infeasible solutions:

Task 1 a) common pitfalls

Bio-inspired Computation and Optimization 2-5Johannes Bader ETH Zurich

� only considering optimal solutions:



Task 1 a) common pitfalls, cont.

� only using words:

� talking about implementation:
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� talking about implementation:

� Allowing copies of the same item:



Task 1 b)
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Task 1 b), (alternative solutions)
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Task 1 b), common pitfalls

� +- 1 errors on the index variable, i.e., ranging from 0 to n:

� < rather than <= when checking the constraint:
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� < rather than <= when checking the constraint:



Task 1 b), common pitfalls, cont.

� forgetting x_i:
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Task 1 c)

� Algorithm calculateObjectiveValue( x, p, w, n, cap)
Input: The set of chosen items x, the number of items n, 

the vectors p (profit) and w (weight) of length n and

the capacity of the knapsack cap.

Output: The objective value

sum_profit = 0
sum_weight = 0
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sum_weight = 0

for i = 1 to n do
sum_profit = sum_profit + x[i]*p[i]
sum_weight = sum_weight + x[i]*w[i]
if sum_weight > cap then

return 0
end if

end for

return sum_profit



Task 1 c), Avoid very brief notations
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TOTAL_WEIGHT equals sum of weights of selected items of x



Task 1 c), common pitfalls

� Forgetting x_i:

� Calculating the fitness for all solutions:
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� Confusing profit and weight:



Task 1 c), common pitfalls, cont.

� Wrong beginning or ending number of iteration:

� Randomly generating solutions:
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Task 1 d)

Bio-inspired Computation and Optimization 2-15Johannes Bader ETH Zurich



Task 1 d) Part 1
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Thanks to Raphael Suard, Michael Benz und Olle Sundström 



Task 1 d) Part 2
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Thanks to Raphael Suard, Michael Benz und Olle Sundström 



Task 1 d) (short solution)
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Task 1 e)

� Exhaustive search, check all 2^n solutions.

� To get the ith solution, you can use the binary representation of i, e.g,

the solution 13 would be 00001101 (8 Items). (Make sure you cover 

the solution 00......0.
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Task 1 e), runtimes

� Runtimes in seconds on the instance with 20 items
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Task 1 e), Fast way to generate all combinations

for ( int k=0; k<(1<<n); k++ ) {

for ( int i=0; i<n; i++ ) {

x[i] = (k>>i) & 1;

}

double p = f( x, weight, profit, capacity );
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double p = f( x, weight, profit, capacity );

if ( p > bestProfit ) {

bestProfit = p;

bestX = x.clone();

}

}


