ETH

Eidgenéssische Technische Hochschule Ziirich Computer Engineering
Swiss Federal Institute of Technology Zurich and Networks Laboratory

Bio-inspired Computation and Optimization

Project 1: Knapsack Problem — Part |
Discussion of Task1

© Eckart Zitzler ETH Zurich Bio-inspired Computation and Optimization

Task 1 a)

a) Describe how you would represent a solution z for the knapsack problem and define the search
space X. (5 Points)

Johannes Bader ETH Zurich Bio-inspired Computation and Optimization

Task 1 a), Solution

1.1 Solution representation

Given are n items and a capacity ¢, where each item ¢ has a positive weight
w; and profit p;. From each item, only one instance is available (/1 bounded

problem).
We define a solution as a vector x € X, with

r= (g, o,...,0,)

where «; € {0,1} denotes the presence (1) or absence (0) of item i in the
knapsack. Therefore 2 € {0,1}™ and the search space is

X =1{0,1)"

= Give x
= Give meaning of elements of x
= Give X

Johannes Bader ETH Zurich Bio-inspired Computation and Optimization

Task 1 a) (alternative solution)

S 1 set of items [/
Cardinality of S : Card(S) =n
Each item [is a pair : [; = (w;. p;),7 € [1,n|

;wz- c N (weight)
| pi € N (profit)

One solution x is one subsets of .S

x e P(9)

v=AL, 1 I, ..}:i. 5.k, ... € [1,n]

The search space is the powerset of S : X = P(9)
The size of the search space is Card(P(S)) = 2")

Harder to implement (variable length vectors)

Johannes Bader ETH Zurich Bio-inspired Computation and Optimization

Task 1 a) common pitfalls

= not giving meaning of x:

We use the following solution vectors : x = (x;, x5, ..., x,), x; € {0,1}

= excluding infeasible solutions:

x=(i,,7,,..,1y) with N<n items such that wai':ﬂ
H

= only considering optimal solutions:

Representation of a Solution: We are looking for the largest accumulated profit

Johannes Bader ETH Zurich Bio-inspired Computation and Optimization

Task 1 a) common pitfalls, cont.

= only using words:

e A solution x can be represented as a vector of size n with each position
representing an item switched on or off

e The Search space is the sum of all possible solutions, there are {0, 1}™ = 2"
possibilities.

= talking about implementation:

£
=

atrix with binary numbers; each column

C 15
- — - —_ ~] 3 _ Y — 3 = 1 37 = —]
represents a candidate to be evaluated.

= Allowing copies of the same item:

Johannes Bader ETH Zurich Bio-inspired Computation and Optimization

Task 1 b)

b) Give an expression for the objective function f. Solutions that exceed the given capacity bound
shall receive an objective function value of zero. (5 Points)

Johannes Bader ETH Zurich Bio-inspired Computation and Optimization

Task 1 b), (alternative solutions)

f(_-r}:{ éZmlxizl} # Blais=e

otherwise

eptif zw! < W
0 if zw! > W

flr) = (Z pi) Smin {matﬂ {c + 1 — Z W, U} 5 1}
1—=1 1—=1

f(r) =

ETH Zurich Bio-inspired Computation and Optimization

Task 1 b), common pitfalls

= +-1 errors on the index variable, i.e., ranging from 0O to n:

f N "

o) = 2.5 P f)% mse
| i=0 i=0
. 0 otherwise

» < rather than <= when checking the constraint:

n n
fx) = Zpl-x,; iLf z w;x; < C x; € {0,1}
i=1 i=1
0

else

Johannes Bader ETH Zurich Bio-inspired Computation and Optimization

Task 1 b), common pitfalls, cont.

= forgetting x_i:

Znizl Pi ifzn;':l W, < C
i) = { §

else

ETH Zurich Bio-inspired Computation and Optimization

Task 1 c)

¢) Describe an algorithm to calculate the objective function value of a given solution x in pseudo
code. (5 Points)

= Algorithm calculateObjectiveValue(x, p, w, n, cap)
Input: The set of chosen items x, the number of items n,
the vectors p (profit) and w (weight) of length n and
the capacity of the knapsack cap.
OQutput: The objective value

sum profit = 0
sum weight = 0
for i = 1 to n do
sum profit = sum profit + x[1]*p[1]
sum weight = sum weight + x[1]*w[1]
if sum weight > cap then
return 0O
end if
end for

return sum profit

Johannes Bader ETH Zurich Bio-inspired Computation and Optimization

Task 1 c), Avoid very brief notations

weight = scalarproduct(x,w)

calculate f(x) =) p.x,
i=1

TOTAL_WEIGHT equals sum of weights of selected items of x

Johannes Bader ETH Zurich Bio-inspired Computation and Optimization

Task 1 ¢), common pitfalls

Forgetting x_i:

for 1 =1 ton
weight = weight + w 1
profit = profit + p 1

Calculating the fitness for all solutions:

For each x do
1f sum{x.*weight) > capaclity
then tot_profit = 0;

tot._profit = sum(x.*prorit)

Confusing profit and weight:

for (i = 1; i <= n; i+4+){
sum += p_1 * X_1;
}

if (sum > e){
gt = 105
}

Johannes Bader ETH Zurich Bio-inspired Computation and Optimization

Task 1 ¢), common pitfalls, cont.

= Wrong beginning or ending number of iteration:

FOR 1

= Randomly generating solutions:

05:
06c:
07:
08:

Johannes Bader

= 0:n DO

randomly choose a solution xteX
for 1 1n range (n)

pt+=p[1]
wt+=w[1]

ETH Zurich

Bio-inspired Computation and Optimization

Task 1 d)

d) Choose a programming language. Write a program that is able to read all problem parameters
(number of items, profit and weight values, capacity) from text files'. Further, the program shall
generate 10000 random solutions and calculate the objective function value of each of them. The
program output consists of the best solution encountered and the corresponding objective function
value. Run the program on the different problem instances given on the lecture website. (/0 Points)

Johannes Bader ETH Zurich Bio-inspired Computation and Optimization

Task 1 d) Part 1

NumberIterations = 100000;

for m = 1:4

numberItem
capacity =
profit — A
welght = A

solution =
x =[]z

Johannes Bader

®
r

a strcat('instance',numiZstr(m), '.txt');
A = textread(a, "zu')

= R(1l);

L(end) ;
(Z:1l+numberItem) ;
(Z4+numberItem:end-1);

0;

Thanks to Raphael Suard, Michael Benz und Olle Sundstrom

ETH Zurich Bio-inspired Computation and Optimization

Task 1 d) Part 2

for i = 1l:NumberlIterations

xl1 = [1:

for 7 = linumberItem
21 (3) = randn/()>0;

end

sclutionl = sum(=xl.*profit');

1f sum(zl.*weight') >capacity
solutionl = 0;

end

if zmclutionl > zsolution
solution = solutionl;
x o= x®1l;
end
end
solution
Tl

Thanks to Raphael Suard, Michael Benz und Olle Sundstrom

Johannes Bader ETH Zurich Bio-inspired Computation and Optimization

Task 1 d) (short solution)

data = load('projectl taskld instancel.txt');

% data = load('projectl task2b.txt');
n=data(l);

p=data(2:1+n);

w=data(2+n:end-1);

c=data(end);

tic
%generate 10000 random solutions
solutions=randerr(10000,n,1:n);

obj = solutions*p;
constr = solutions*w<=¢;
ob] = obj.*constr;

[a bestsolution]=max(obj);

disp(['Best solution: ' num2str(solutions(bestsolution,:)) 1);
disp(['Zielwert der Best solution: ' num2str(a)]);
toc

Johannes Bader ETH Zurich Bio-inspired Computation and Optimization

Task 1 e)

= Exhaustive search, check all 2*n solutions.

= To get the ith solution, you can use the binary representation of i, e.g,
the solution 13 would be 00001101 (8 Items). (Make sure you cover
the solution 00......0.

for 1 = 1:2"numberItem

xl =[]

bin = 1;

for 7 = l:numberItem
21 (3) = remi(bin,Z);
bin = floor(bin/2) ;

end

Johannes Bader ETH Zurich Bio-inspired Computation and Optimization

Task 1 e), runtimes

= Runtimes in seconds on the instance with 20 items

10000
= Matlab Java
1000 1 Python ®Perl
C
(o]
100 +— -
<
<
% 5 26.45
- o o = ¢
g & 8 P

3.17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Johannes Bader ETH Zurich Bio-inspired Computation and Optimization

Task 1 e), Fast way to generate all combinations

for (int k=0; k< (1<<n); k++) {
for (int 1=0; i<n,; 1i++) {
x[1] = (k>>i) & 1;
}
double p = f£(x, weight, profit, capacity);
if (p > bestProfit) {
bestProfit = p;

bestX = x.clone () ;

Johannes Bader ETH Zurich Bio-inspired Computation and Optimization

